Given the second order homogeneous constant coefficient equation y′′−4y′−12y=0 1) the characteristic polynomial ar2+br+c is r^2-4r-12 . 2) The roots of auxiliary equation are (enter answers as a comma separated list). 3) A fundamental set of solutions is (enter answers as a comma separated list). 4) Given the initial conditions y(0)=1 and y′(0)=−26 find the unique solution to the IVP y= .

Respuesta :

Answer:

The initial value problem [tex]y(x) = 4 e^{-2x} -3 e^{6 x}[/tex]

Step-by-step explanation:

Step1:-

a) Given second order homogenous constant co-efficient equation

[tex]y^{ll} - 4y^{l}-12y=0[/tex]

Given equation in the operator form is [tex](D^{2} -4D-12)y=0[/tex]

Step 2:-

b) Let f(D) = [tex](D^{2} -4D-12)y[/tex]

Then the auxiliary equation is [tex](m^{2} -4m-12)=0[/tex]

Find the factors of the auxiliary equation is

[tex]m^{2} -6m+2m-12=0[/tex]

m(m-6) + 2(m-6) =0

m+2 =0 and m-6=0

m=-2 and m=6

The roots are real and different

The general solution [tex]y = c_{1} e^{-m_{1} x} + c_{2} e^{m_{2} x}[/tex]

the roots are [tex]m_{1} = -2 and m_{2} = 6[/tex]

The general solution of given differential equation is

[tex]y = c_{1} e^{-2x} + c_{2} e^{6 x}[/tex]

Step 3:-

C) Given initial conditions are y(0) =1 and y1 (0) =-26

The general solution of given differential equation is

[tex]y(x) = c_{1} e^{-2x} + c_{2} e^{6 x}[/tex]   .....(1)

substitute x =0 and y(0) =1

[tex]y(0) = c_{1} e^{0} + c_{2} e^{0}[/tex]

[tex]1 = c_{1} + c_{2}[/tex]    .........(2)

Differentiating equation (1) with respective to 'x'

[tex]y^l(x) = -2c_{1} e^{-2x} + 6c_{2} e^{6 x}[/tex]

substitute x= o and y1 (0) =-26

[tex]-26 = -2c_{1} e^{0} + 6c_{2} e^{0}[/tex]

[tex]-2c_{1} + 6c_{2} = -26[/tex] .............(3)

solving (2) and (3)  by using substitution method

[tex]substitute c_{2} =1- c_{1}[/tex] in equation (3)

[tex]-2c_{1} + 6(1-c_{1}) = -26[/tex]

on simplification , we get

[tex]-2c_{1} + 6(1)-6c_{1}) = -26[/tex]

[tex]-8c_{1} = -32[/tex]

dividing by'8' we get [tex]c_{1} =4[/tex]

substitute [tex]c_{1} =4[/tex] in equation [tex]1 = c_{1} + c_{2}[/tex]

so [tex]c_{2} = 1-4 = -3[/tex]

now substitute [tex]c_{1} =4 and c_{2} =-3[/tex] in general solution

[tex]y(x) = c_{1} e^{-2x} + c_{2} e^{6 x}[/tex]

[tex]y(x) = 4 e^{-2x} -3 e^{6 x}[/tex]

now the initial value problem

[tex]y(x) = 4 e^{-2x} -3 e^{6 x}[/tex]

ACCESS MORE