Respuesta :

Answer:  "  [tex]z = 10^(^3^m^-^2^n^)[/tex]  " .

________________________________

Step-by-step explanation:

________________________________

The question states:  "Can [you] help [me] find out what "c" is ? " .

________

       "Can [you] help [me] find out what "c" is ? " .

 →  We are to answer: "Part C" —within the "attached image" given:

________

 →   " [tex]1000^m[/tex] ÷ [tex]100^n[/tex] " ;  can be written in the form of:  " [tex]10^z[/tex] " .

 →     Express z  in terms of m and n .

________

Note: Rewrite:  " [tex]1000^m[/tex] " ;   and:  " [tex]100^n[/tex] " ;   as powers of "[tex]10[/tex]" ;

  →  with "[tex]10[/tex]" being the "base number" .

________

Let us start with:  " [tex]1000^m[/tex] " .

Note that the number:  " [tex]1000 = 10^3[/tex] " ;

     →   since " [tex]1000[/tex] " ;  has 3 (three) zeros after the "1" digit;

     → & since:  " [tex]10^3 = 10 * 10* 10 = 1000[/tex] " .

So:  →   [tex]1000^m = (10^3)^m[/tex] .

Now, let's simplify further.

Note the "multiplication property" of exponents:

    →  [tex](a^b)^c = a^(^b^*^c^)=a^(^b^c^)[/tex] .

As such:  →   [tex]1000^m=(10^3)^m = 10^(^3^*^m)=10^(^3^m^) .[/tex]

________

Likewise:  We can continue by rewriting our other term:

    →  " [tex]100^n[/tex] " ;  as a power of "[tex]10[/tex]" ;

             with "[tex]10[/tex]" being the "base number."

Note that the number:  " [tex]100 = 10^2[/tex] " ;

     →   since " [tex]100[/tex] " ;  has 2 (two) zeros after the "1" digit;

     →  & since:  " [tex]10^2 = 10 * 10 = 100[/tex] " .

So:

     →   [tex]100^n = (10^2)^n[/tex] .

Now, let's simplify further.

________

Again:  As aforementioned:

Note the "multiplication property" of exponents:

    →  [tex](a^b)^c = a^(^b^*^c^)=a^(^b^c^)[/tex] .

As such:

     →  [tex]100^n = (10^2)^n=10^(^2^*^n^) = 10^(^2^n^)[/tex] .

________

Now, refer to the original problem:

     →  " [tex]1000^m[/tex]  ÷  [tex]100^n[/tex]  "  ;  

Rewrite this expression by substituting:

    →   " [tex]10^(^3^m^)[/tex] " ;  ←  [for:  " [tex]1000^m[/tex] ."] ;  And:

    →   " [tex]10^(^2^n^)[/tex] " ;   ←  [for:  " [tex]100^n[/tex] ."] ;

As follows:

    →  " [tex]10^(^3^m^)[/tex]  ÷  [tex]10^(^2^n^)[/tex] "  .

________

Now:  Note the following "division property" of exponents:

________

    →  [tex]\frac{a^m}{a^n} = a^(^m^-^n^)[/tex] ;  [tex]a\neq 0 .[/tex]

________

As such; let's rewrite our expression; and simplify—by plugging in our values into the "equation/formula" directly above; in which:

________

→  " [tex]a[/tex] " [in the aforementioned formula] is:   " [tex]10[/tex] " .

→  " [tex]m[/tex] " [the 'exponent' in the aforementioned formula] is:                                                                                                    

                                                                          " [tex](3m)[/tex] " .

→  " [tex]n[/tex] " [the 'exponent' in the aforementioned formula is:

                                                                          " [tex](2n)[/tex] " .

→  " [tex]a^m[/tex] " [in the aforementioned formula] is:  " [tex]10^(^3^m^)[/tex] " ;

→  " [tex]a^n[/tex] "  [in the aforementioned formula] is:  " [tex]10^(^2^n^)[/tex] " .

________

  →  Let's plug in our values;  and then "simplify" ; as follows:

________

→   [tex]\frac{10^(^3^m^)}{10^(^2^n^)} =[/tex] ? ;  

               [tex]= 10^(^3^m^-^2^n^)[/tex] .

→   [tex]\frac{10^(^3^m^)}{10^(^2^n^)} = 10^(^3^m^-^2^n^)[/tex]    .

________

So:  →   " [tex]10^z = ?[/tex] " ;

    ↔   " [tex]10^z = 10^(^3^m^-^2^n^)[/tex] " .

         →  " [tex]z = 10^(^3^m^-^2^n^)[/tex] " .

_______________________________________

Hope this answer is helpful.

  Best wishes to you in your academic endeavors

          —and within the "Brainly" community!

_______________________________________