Respuesta :

Using the law of sines, we have

[tex]\dfrac{AB}{\sin(C)}=\dfrac{BC}{\sin(A)}[/tex]

And we know that

[tex]AB=\sqrt{85},\quad BC=6,\quad A=90[/tex]

So, the equation becomes

[tex]\sin(A)=\dfrac{BC\sin(C)}{AB}=\dfrac{6\sin(90)}{\sqrt{85}}=\dfrac{6}{\sqrt{85}}[/tex]

The value of the sin A in simplest radical form is 0.651 units.

Given-

The triangle given in the image is Right angle triangle.

The value of side AB is [tex]\sqrt{85}[/tex].

The value of side BC is 6.

The value of side CA is 7.

The value of angle ABC is 90 degree (right angle triangle).

Sine law-The law of sine can be used to calculate the remaining sides or angle of the triangle when 2 or more sides or angle are known. Using sine law-

[tex]\dfrac{AB}{Sin C} =\dfrac{BC}{Sin A}[/tex]

Put the values,

[tex]\dfrac{\sqrt{85} }{Sin 90} =\dfrac{6}{Sin A}[/tex]

Solve for sinA,

[tex]{Sin A}=\dfrac{6\times Sin (90)}{\sqrt{85} }[/tex]

[tex]Sin A=\dfrac{6}{\sqrt{85} }[/tex]

[tex]Sin A=0.651[/tex]

Hence, the value of the sin A in simplest radical form is 0.651 units.

For more about the right angle triangle follow the link below-

https://brainly.com/question/3770177

ACCESS MORE