Respuesta :
Answer:
2.69x10²² molecules of O₂
Explanation:
We start with the knowldge that says: "the sum of mole fractions in a mixture of gases = 1 ". When we start with this, we propose
Mole fraction N₂ + Mole fraction Ne + Mole fraction O₂ = 1
0.55 + 0.25 + Mole fraction O₂ = 1
Mole fraction O₂ = 1 - 0.25 - 0.55 → 0.20
We know that the mixture is at STP in a 5L of volume, so let's calculate the volume. We use the Ideal Gases Law
1 atm . 5L = n . 0.082 . 273 K
n = 1 atm . 5L / 0.082 . 273K → 0.223 moles
These number of moles are the total moles in the mixture. We apply the mole fraction to determine the moles of O₂ that are present in the container.
Mole fraction O₂ = Moles O₂ / Total moles → Mole fraction O₂ . Total moles = moles O₂
0.223 moles . 0.2 = 0.0446 moles of O₂
Let's count the number of molecules
0.0446 moles . 6.02x10²³molecules / 1 mol = 2.69x10²² molecules of O₂
The number of molecules of O₂ present in the container which consists of N₂, O₂ and Ne is 2.68×10²² molecules
- We'll begin by calculating the the mole fraction of O₂. This can be obtained as follow:
Mole fraction of N₂ = 0.55
Mole fraction of Ne = 0.25
Total mole fraction = 1
Mole fraction of O₂ =?
Mole fraction of N₂ + Mole fraction of Ne + Mole fraction of O₂ = 1
0.55 + 0.25 + Mole fraction of O₂ = 1
0.8 + Mole fraction of O₂ = 1
Collect like terms
Mole fraction of O₂ = 1 – 0.8
Mole fraction of O₂ = 0.2
- Next, we shall determine the total mole of the gases in the container. This can be obtained as follow:
Pressure (P) = 1 atm (at stp)
Temperature (T) = 273 (at stp)
Volume (V) = 5 L
Gas constant (R) = 0.0821 atm.L /Kmol
Number of mole (n) =?
PV = nRT
1 × 5 = n × 0.0821 × 273
5 = n × 22.4133
Divide both side by 22.4133
[tex]n = \frac{5}{22.4133}\\\\[/tex]
n = 0.223 mole
Thus, the total mole of the gases in the container is 0.223 mole
- Next, we shall determine the number of mole of O₂. This can be obtained as follow:
Mole fraction of O₂ = 0.2
Total mole = 0.223 mole
Mole of O₂ =.?
Mole = Total mole × mole fraction
Mole of O₂ = 0.2 × 0.223
Mole of O₂ = 0.0446 mole
- Finally, we shall determine the number of molecules of O₂ present in the container.
From Avogadro's hypothesis
1 mole of O₂ = 6.02×10²³ molecules
Therefore,
0.0446 mole of O₂ = 0.0446 × 6.02×10²³
0.0446 mole of O₂ = 2.68×10²² molecules
Thus, the number of molecules of O₂ present in the container is 2.68×10²² molecules
Learn more: https://brainly.com/question/6167128