Respuesta :
Answer:
a) [tex] P(50 < X<70)= P(X<70) -P(X<50) = \frac{70-48}{48} -\frac{50-48}{48} = 0.417[/tex]
b) [tex] P(X<75)= \frac{75-48}{48} = 0.5625[/tex]
c) [tex] P(X>90)=1- \frac{90-48}{48} = 1-0.875 = 0.125[/tex]
d) [tex] P(X<60)[/tex]
And using the CDF we got:
[tex] P(X<60)= \frac{60-48}{48} = 0.25[/tex]
[tex] P(X>80)[/tex]
And using the CDF and the complement rule we got:
[tex] P(X>80)=1- \frac{80-48}{48} = 1-0.667 = 0.333[/tex]
So then the probability required would be:
P(X < 60 or X > 80) = 0.25+0.333= 0.583
Step-by-step explanation:
For this case we define the random variable of interest X, and we know the distribution given by:
[tex] X \sim Unif (a= 48, b=96)[/tex]
The density function is given by:
[tex] f(x) = \frac{1}{96-48} = \frac{1}{48} , 48 \leq X \leq 96[/tex]
And the cumulative distribution function is given by:
[tex] F(x) = \frac{x-48}{96-48} , 48 \leq X \leq 96 [/tex]
Part a
We want this probability:
[tex] P(50 < X<70)[/tex]
And we can find this probability with this difference:
[tex] P(50 < X<70)= P(X<70) -P(X<50)[/tex]
And replacing we got:
[tex] P(50 < X<70)= P(X<70) -P(X<50) = \frac{70-48}{48} -\frac{50-48}{48} = 0.417[/tex]
Part b
We want this probability:
[tex] P(X<75)[/tex]
And using the CDF we got:
[tex] P(X<75)= \frac{75-48}{48} = 0.5625[/tex]
Part c
We want this probability:
[tex] P(X>90)[/tex]
And using the CDF and the complement rule we got:
[tex] P(X>90)=1- \frac{90-48}{48} = 1-0.875 = 0.125[/tex]
Part d
[tex] P(X<60)[/tex]
And using the CDF we got:
[tex] P(X<60)= \frac{60-48}{48} = 0.25[/tex]
[tex] P(X>80)[/tex]
And using the CDF and the complement rule we got:
[tex] P(X>80)=1- \frac{80-48}{48} = 1-0.667 = 0.333[/tex]
So then the probability required would be:
P(X < 60 or X > 80) = 0.25+0.333= 0.583