Respuesta :
Answer:
The 90% confidence interval for the proportion of all Americans age 20 and over with diabetes is between 0.0999 and 0.1301
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 1200, \pi = \frac{138}{1200} = 0.115[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.115 - 1.645\sqrt{\frac{0.115*0.885}{1200}} = 0.0999[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.115 + 1.645\sqrt{\frac{0.115*0.885}{1200}} = 0.1301[/tex]
The 90% confidence interval for the proportion of all Americans age 20 and over with diabetes is between 0.0999 and 0.1301
Answer:
90% confidence interval for the proportion of all Americans age 20 and over with diabetes is [0.0998 , 0.1301].
Step-by-step explanation:
We are given that in a simple random sample of 1200 Americans age 20 and over, there were 138 people with diabetes.
Assuming the data has a normal distribution.
Firstly, the pivotal quantity for 90% confidence interval for the proportion of all Americans age 20 and over with diabetes is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = proportion of Americans having diabetes in a sample of 1200
Americans = [tex]\frac{138}{1200}[/tex] = 0.115
n = sample of Americans = 1200
p = population proportion
Here for constructing 90% confidence interval we have used One-sample z proportion statistics.
So, 90% confidence interval for the population proportion, p is ;
P(-1.6449 < N(0,1) < 1.6449) = 0.90 {As the critical value of z at 5% level of
significance are -1.6449 & 1.6449}
P(-1.6449 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.6449) = 0.90
P( [tex]-1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.90
P( [tex]\hat p-1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.90
90% confidence interval for p= [[tex]\hat p-1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.6449 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]]
= [ [tex]0.115-1.6449 \times {\sqrt{\frac{0.115(1-0.115)}{1200} } }[/tex] , [tex]0.115+1.6449 \times {\sqrt{\frac{0.115(1-0.115)}{1200} } }[/tex] ]
= [0.0998 , 0.1301]
Hence, 90% confidence interval for the proportion of all Americans age 20 and over with diabetes is [0.0998 , 0.1301].