What is the equation of the circle with center (4, 4) that passes through the point (10, 14)? HELP MEEEEE PLEASE

Respuesta :

Answer:

The equation of the circle can be written as:

  • [tex]\left(x-4\right)^2+\left(y-4\right)^2=136[/tex]

Step-by-step explanation:

The general equation of a circle with center [tex](h,k)[/tex] and radius [tex]r[/tex] is:

[tex]\left(x-h\right)^2+\left(y-k\right)^2=r^2[/tex]

In our example, we know [tex]\left(h,k\right)=\left(4,4\right)[/tex], as we just have to make sure we need determine [tex]\:r^2[/tex].

[tex]\left(x-4\right)^2+\left(y-4\right)^2=r^2\:\:[/tex]

As the circle passes through (10, 14), that pair of values for x and y must satisfy the equation. So we have:

[tex]\left(10-4\right)^2+\left(14-4\right)^2=r^2[/tex]

[tex]\mathrm{Switch\:sides}[/tex]

[tex]r^2=\left(10-4\right)^2+\left(14-4\right)^2[/tex]

[tex]r^2=6^2+10^2[/tex]

[tex]r^2=36+100[/tex]

[tex]r^2=136[/tex]

Thus the equation of the circle can be written as:

[tex]\left(x-4\right)^2+\left(y-4\right)^2=136[/tex]

Answer:D

Step-by-step explanation:

ACCESS MORE