Answer:
PICTURE #1
[tex]a_1 = 5\\a_2 = 2a__(n-1)[/tex] [tex]+ 3[/tex]
Step 1: Solve for [tex]a_2[/tex]
a1 = 5
[tex]a_2 = 2a___n-1\\[/tex] [tex]+3[/tex]
[tex]a_2=2a__(2-1)[/tex] + 3
[tex]a_2 = 2a_1 + 3[/tex]
[tex]a_2 = 2(5) + 3[/tex]
[tex]a_2 = 10 + 3\\[/tex]
[tex]a_2 = 13[/tex]
Step 2: Solve for [tex]a_3[/tex]
[tex]a_2 = 13[/tex]
[tex]a_3 = 2a__(3-1)[/tex] + 3
[tex]a_3 = 2a_2 + 3[/tex]
[tex]a_3 = 2(13) + 3[/tex]
[tex]a_3 = 26 + 3[/tex]
[tex]a_3 = 29[/tex]
Step 3: Solve for [tex]a_4[/tex]
[tex]a_3 = 29[/tex]
[tex]a_4 = 2a__(4-1)[/tex] + 3
[tex]a_4 = 2a_3 + 3[/tex]
[tex]a_4 = 2(29) + 3[/tex]
[tex]a_4 = 58 + 3[/tex]
[tex]a_4 = 61[/tex]
The fourth terms is: [tex]a_4 = 61[/tex]
PICTURE #2
[tex]a_1 = 2\\a_2 = -3a__(n - 1)[/tex] [tex]+ 2[/tex]
Step 1: Find [tex]a_2[/tex]
[tex]a_2 = -3a_1 + 2[/tex]
[tex]a_2 = -3(2) + 2[/tex]
[tex]a_2 = -6 + 2[/tex]
[tex]a_2 = -4[/tex]
Step 2: Find [tex]a_3[/tex]
[tex]a_3 = -3a_2 + 2[/tex]
[tex]a_3 = -3(-4) + 2\\[/tex]
[tex]a_3 = 12 + 2[/tex]
[tex]a_3 = 14[/tex]
Step 3: Find [tex]a_4[/tex]
[tex]a_4 = -3a_3 + 2[/tex]
[tex]a_4 = -3(14) + 2[/tex]
[tex]a_4 = -42 + 2[/tex]
[tex]a_4 = -40[/tex]
Step 4: Find [tex]a_5[/tex]
[tex]a_5 = -3a_4 + 2[/tex]
[tex]a_5 = -3(-40) + 2\\[/tex]
[tex]a_5 = 120 + 2[/tex]
[tex]a_5 = 122[/tex]
Answer: The fifth term for the second picture is -> [tex]a_5 = 122[/tex]