Respuesta :
Answer:
8.5 cm
Explanation:
According to the work energy theorem, the total work done equals the change in the kinetic energy of the particle.
Therefore,
[tex]W = K_{total} \\[/tex]
where,
[tex]K_{tot} = K_{f} - K_{i} \\[/tex]
Here, W is the total work done by force on the spring.
plug in the following values:
[tex]\\ K_{i} = \frac{mv^{2} }{2} \\ K_{f} = 0\\W = -\frac{kx^{2} }{2}[/tex]
We get:
[tex]-\frac{kx^{2} }{2} = 0 -\frac{mv^{2} }{2}[/tex]
Solving this
[tex]x = v\sqrt{\frac{m}{k} }[/tex]
Plug in the values given in the question:
[tex]x = 3\sqrt{\frac{6}{7500} }[/tex]
[tex]x = 8.5 cm[/tex]
The maximum compression of the spring will be "0.08 m".
According to the question,
Mass of the box,
- m = 6 kg
Speed of the box,
- V = 3 m/s
Force constant of spring,
- k = 75 N/cm
= 75 × 100
= 7500 N/m
By using the conservation of energy, we get
→ [tex]\frac{mV^2}{2} = \frac{kX^2}{2}[/tex]
or,
→ [tex]mV^2=kX^2[/tex]
By substituting the values, we get
→ [tex]6(3)^2= (7500)X^2[/tex]
→ [tex]54= 7500 \ X^2[/tex]
[tex]X^2 = \frac{54}{7500}[/tex]
[tex]X^2= 0.0072[/tex]
[tex]X = 0.08 \ m[/tex] (Max. spring compression)
Thus the above approach is correct.
Learn more:
https://brainly.com/question/15238117