A 6.0-kg box moving at 3.0 m/s on a horizontal, frictionless surface runs into a light spring of force constant 75 N/cm. Use the work-energy theorem to find the maximum compression of the spring

Respuesta :

Answer:

8.5 cm

Explanation:

According to the work energy theorem, the total work done equals the change in the kinetic energy of the particle.

Therefore,

[tex]W = K_{total} \\[/tex]

where,

[tex]K_{tot} = K_{f} - K_{i} \\[/tex]

Here, W is the total work done by force on the spring.

plug in the following values:

[tex]\\ K_{i} = \frac{mv^{2} }{2} \\ K_{f} = 0\\W = -\frac{kx^{2} }{2}[/tex]

We get:

[tex]-\frac{kx^{2} }{2} = 0 -\frac{mv^{2} }{2}[/tex]

Solving this

[tex]x = v\sqrt{\frac{m}{k} }[/tex]

Plug in the values given in the question:

[tex]x = 3\sqrt{\frac{6}{7500} }[/tex]

[tex]x = 8.5 cm[/tex]

The maximum compression of the spring will be "0.08 m".

According to the question,

Mass of the box,

  • m = 6 kg

Speed of the box,

  • V = 3 m/s

Force constant of spring,

  • k = 75 N/cm

           = 75 × 100

           = 7500 N/m

By using the conservation of energy, we get

→ [tex]\frac{mV^2}{2} = \frac{kX^2}{2}[/tex]

or,

→ [tex]mV^2=kX^2[/tex]

By substituting the values, we get

→ [tex]6(3)^2= (7500)X^2[/tex]

→      [tex]54= 7500 \ X^2[/tex]

      [tex]X^2 = \frac{54}{7500}[/tex]

      [tex]X^2= 0.0072[/tex]

       [tex]X = 0.08 \ m[/tex] (Max. spring compression)

Thus the above approach is correct.

Learn more:

https://brainly.com/question/15238117