Respuesta :
Answer:
x= 5, y = 1.5
Step-by-step explanation:
to solve the equation simultaneously using substitution method we say that let
5x-4y=19 ................................. equation 1
x+2y=8.................................... equation2
from equation 2
x+2y=8.................................... equation2
x = 8-2y................................. equation 3
subtitute for x = 8-2y in equation 1
5x-4y=19 ................................. equation 1
5(8-2y) -4y = 19
40 -10y -4y =19
collect the like terms
40 -19 = 10y + 4y
21= 14y
divide both sides by 14
21/14 = 14y/14
1.5 = y
therefore y= 1.5
put y=1.5 in equation 3
x = 8-2y................................. equation 3
x = 8 - 2(1.5)
x = 8 -3
x = 5
therefore x= 5, y = 1.5
Answer:
Step-by-step explanation:
Given Equations:
[tex]5x-4y=19[/tex] Equation:1
[tex]x+2y=8[/tex]
or, [tex]x=8-2y[/tex] Equation:2
Using Substitution Method, putting the value of 'x' in equation:1
[tex]5x-4y=19[/tex]
[tex]5(8-2y)-4y=19\\\\5(8)-5(2y)-4y=19\\\\40-10y-4y=19\\\\40-14y=19\\[/tex]
Subtracting '40' both side:
[tex]-14y=19-40\\\\-14y=-21\\\\y=-21/-14\\\\y=1.5[/tex]
Putting the value 'y' in Equation 2 to get the value of 'x':
[tex]x=8-2y[/tex]
[tex]x=8-2(1.5)\\\\x=8-3.0\\\\x=5[/tex]
The values are: [tex]x=5[/tex] and [tex]y=1.5[/tex]