Answer:
The vertex is (1, 3). It's a max.
Step-by-step explanation:
I'm gonna use completing the square to solve for the vertex.
y = -2x² + 4x + 1 , dividing by -2
y = x² - 2x - 1/2
y = x² - 2x + 1 - 1 - 1/2
y = (x² - 2x + 1) +(- 1 - 1/2)
y = (x² - 1)² + (- 1.5) , multiplying back in the -2 I divided earlier
y = -2(x² - 1)² + -2(- 1.5)
y = -2(x² - 1)² + 3
Equation is now in form of y = a(x² - h)² + k where the vertex is (h, k).
y = a(x² - h)² + k
y = -2(x² - 1)² + 3
So the vertex is (1, 3).
It's a max because y = -x². A negative x² will form a frowning face; the curve will point down forming a max point.