Put these in order starting with the smallest.
9 3/2
27 1/3
125 2/3

Answer:
second, third,first
Step-by-step explanation:
first
3/2=1.5
9^1.5=27
second
1/3=0.333
27^0.333=3
third
2/3=0.667
125^0.667=25
The order with the smallest is [tex]27^{\frac{1}{3} }<125^{\frac{2}{3} }<9^{\frac{3}{2} }[/tex]
Simplify using exponents and power rule [tex](a^{m} )^{n}=a^{mn}[/tex]
We have
[tex]9^{\frac{3}{2} } \\=(3^{2} )^{\frac{3}{2} } \\=3^{3} \\=27[/tex]
And
[tex]27^{\frac{1}{3} } \\=(3^{3} )^{\frac{1}{3} } \\=3[/tex]
And
[tex]125^{\frac{2}{3} } \\=(5^{3} )^{\frac{2}{3} } \\=5^{2} \\=25[/tex]
So, 27>25>3
Therefore order starting with the smallest is [tex]27^{\frac{1}{3} }<125^{\frac{2}{3} }<9^{\frac{3}{2} }[/tex]
Learn more:https://brainly.com/question/13277609