Respuesta :

Answer:

second, third,first

Step-by-step explanation:

first

3/2=1.5

9^1.5=27

second

1/3=0.333

27^0.333=3

third

2/3=0.667

125^0.667=25

The order with the smallest is [tex]27^{\frac{1}{3} }<125^{\frac{2}{3} }<9^{\frac{3}{2} }[/tex]

Simplify using exponents and power rule [tex](a^{m} )^{n}=a^{mn}[/tex]

We have

[tex]9^{\frac{3}{2} } \\=(3^{2} )^{\frac{3}{2} } \\=3^{3} \\=27[/tex]  

 And

[tex]27^{\frac{1}{3} } \\=(3^{3} )^{\frac{1}{3} } \\=3[/tex]

And  

[tex]125^{\frac{2}{3} } \\=(5^{3} )^{\frac{2}{3} } \\=5^{2} \\=25[/tex]

So, 27>25>3

Therefore order starting with the smallest is [tex]27^{\frac{1}{3} }<125^{\frac{2}{3} }<9^{\frac{3}{2} }[/tex]

Learn more:https://brainly.com/question/13277609  

ACCESS MORE