Answer:
[tex]\frac{dy}{dx} = \frac{4^{lnx} . ln4 }{x}[/tex]
Step-by-step explanation:
In this question, you will find the differential. We will use following property of derivative.
[tex]\frac{d[a^{f(x)} ]}{dx} = a^{f(x)} . lna . \frac{d[f(x) ]}{dx}[/tex]
So for the given equation [tex]y = 4^{lnx} \\[/tex]
taking derivative [tex]\frac{d}{dx\\}[/tex] of both sides
[tex]\frac{dy}{dx} = \frac{d(4^{lnx})}{dx}\\[/tex]
Using the property on right side of the equation
[tex]\frac{dy}{dx} = 4^{lnx} . ln4 . \frac{d(lnx)}{dx} ---(eq 1)[/tex]
we know that
[tex]\frac{d(lnx)}{dx} = \frac{1}{x}[/tex]
Plug in this value in (eq 1)
[tex]\frac{dy}{dx} = 4^{lnx} . ln4 . \frac{1}{x} \\\frac{dy}{dx} = \frac{4^{lnx} . ln4 }{x}[/tex]
which is the final answer