Respuesta :

Answer:

[tex]\frac{dy}{dx} = \frac{4^{lnx} . ln4 }{x}[/tex]

Step-by-step explanation:

In this question, you will find the differential. We will use following property of derivative.

[tex]\frac{d[a^{f(x)} ]}{dx} = a^{f(x)} . lna . \frac{d[f(x) ]}{dx}[/tex]

So for the given equation [tex]y = 4^{lnx} \\[/tex]

taking derivative [tex]\frac{d}{dx\\}[/tex] of both sides

[tex]\frac{dy}{dx} = \frac{d(4^{lnx})}{dx}\\[/tex]

Using the property on right side of the equation

[tex]\frac{dy}{dx} = 4^{lnx} . ln4 . \frac{d(lnx)}{dx} ---(eq 1)[/tex]

we know that

[tex]\frac{d(lnx)}{dx} = \frac{1}{x}[/tex]

Plug in this value in (eq 1)

[tex]\frac{dy}{dx} = 4^{lnx} . ln4 . \frac{1}{x} \\\frac{dy}{dx} = \frac{4^{lnx} . ln4 }{x}[/tex]

which is the final answer

ACCESS MORE