Respuesta :
Answer:
[tex]\Delta _RH=-310.53kJ/mol[/tex]
Explanation:
Hello,
In this case, the undergoing chemical reaction is:
[tex]C_2H_2(g)+2H_2(g)\rightarrow C_2H_6(g)[/tex]
Thus, the standard enthalpies of formation are:
[tex]\Delta _fH_{C_2H_2}=226.73kJ/mol\\\Delta _fH_{H_2}=0kJ/mol\\\Delta _fH_{C_2H_6}=-83.8 kJ/mol[/tex]
Hence, the standard enthalpy of reaction becomes:
[tex]\Delta _RH=-83.8kJ/mol-0kJ/mol-226.73kJ/mol\\\Delta _RH=-310.53kJ/mol[/tex]
Best regards.
The standard enthalpy change for the hydrogenation of ethyne to ethane is -310.5 kJ/mol.
Let's consider the reaction for the hydrogenation of ethyne to ethane.
C₂H₂(g) + 2 H₂(g) ⇒ C₂H₆(g)
The standard enthalpies of formation (ΔH°f) are:
- ΔH°f(C₂H₂(g)) = 226.7 kJ/mol
- ΔH°f(H₂(g)) = 0 kJ/mol
- ΔH°f(C₂H₆(g)) = -83.8 kJ/mol
We can calculate the standard enthalpy change for the reaction (ΔH°r) using the following expression.
[tex]\Delta H\° _r = \Sigma \Delta H\°f(p) \times n_p - \Sigma \Delta H\°f(r) \times n_r[/tex]
where,
- n: moles
- r: reactants
- p: products
The standard enthalpy change for the reaction is:
[tex]\Delta H\° _r = \Sigma \Delta H\°f(C_2H_6) \times 1mol - \Sigma \Delta H\°f(C_2H_2) \times 1mol - \Sigma \Delta H\°f(H_2) \times 2mol\\\\\Delta H\° _r = (-83.8 kJ/mol) \times 1mol - (226.7kJ/mol) \times 1mol - (0kJ/mol) \times 2mol\\\\\Delta H\° _r = -310.5 kJ[/tex]
The standard enthalpy change for the hydrogenation of ethyne to ethane is -310.5 kJ/mol.
Learn more: https://brainly.com/question/15525058