Answer:
The [tex]pK_a[/tex] of the X-281 medicne is 4.29.
Explanation:
Concentration of medicine in solution = [tex][HA]=c=0.079 M[/tex]
[tex]HA\rightleftharpoons A^+H^+[/tex]
Initially
c 0 0
At equilibrium
(c-x) x x
The expression of an dissociation constant [tex]K_A[/tex] is given by :
[tex]K_a=\frac{[A^-][H^+]}{[HA]}[/tex]
[tex]K_a=\frac{x\times x}{(c-x)}[/tex]..[1]
The pH of the solution = 2.70
[tex]pH=-\log[H^+][/tex]
[tex]2.70=-\log[H^+]=-\log[x][/tex]
[tex]x=10^{-2.70}=0.001995 M[/tex]..[2]
Using [2] in [1]
[tex]K_a=\frac{0.001995 M\times 0.001995 M}{(0.079-0.001995 M)}[/tex]
[tex]K_a=5.170\times 10^{-5}[/tex]
The [tex]pK_a[/tex] of the medicine :
[tex]pK_a=-\log[K_a]=-\log[5.170\times 10^{-5}]=4.29[/tex]
The [tex]pK_a[/tex] of the X-281 medicne is 4.29.