Answer : The concentration of [tex][Fe(SCN)]^{2+}[/tex] is, [tex]4.32\times 10^{-4}M[/tex]
Explanation :
When we assume this reaction is driven to completion because of the large excess of one ion then we are assuming limiting reagent is [tex]SCN^-[/tex] and [tex]Fe^{3+}[/tex] is excess reagent.
First we have to calculate the moles of KSCN.
[tex]\text{Moles of }KSCN=\text{Concentration of }KSCN\times \text{Volume of solution}[/tex]
[tex]\text{Moles of }KSCN=0.00180M\times 0.006L=1.08\times 10^{-5}mol[/tex]
Moles of KSCN = Moles of [tex]K^+[/tex] = Moles of [tex]SCN^-[/tex] = [tex]1.08\times 10^{-5}mol[/tex]
Now we have to calculate the concentration of [tex][Fe(SCN)]^{2+}[/tex]
[tex]\text{Concentration of }[Fe(SCN)]^{2+}=\frac{\text{Moles of }[Fe(SCN)]^{2+}}{\text{Volume of solution}}[/tex]
Total volume of solution = (6.00 + 5.00 + 14.00) = 25.00 mL = 0.025 L
[tex]\text{Concentration of }[Fe(SCN)]^{2+}=\frac{1.08\times 10^{-5}mol}{0.025L}=4.32\times 10^{-4}M[/tex]
Thus, the concentration of [tex][Fe(SCN)]^{2+}[/tex] is, [tex]4.32\times 10^{-4}M[/tex]