Respuesta :
Answer: 0.294 mol of [tex]Br_2[/tex] present in the reaction vessel.
Explanation:
Initial moles of [tex]H_2[/tex] = 0.682 mole
Initial moles of [tex]Br_2[/tex] = 0.440 mole
Volume of container = 2.00 L
Initial concentration of [tex]H_2=\frac{moles}{volume}=\frac{0.682moles}{2.00L}=0.341M[/tex]
Initial concentration of [tex]Br_2=\frac{moles}{volume}=\frac{0.440moles}{2.00L}=0.220M[/tex]
equilibrium concentration of [tex]H_2=\frac{moles}{volume}=\frac{0.536mole}{2.00L}=0.268M[/tex]
The given balanced equilibrium reaction is,
[tex]H_2(g)+Br_2(g)\rightleftharpoons 2HBr(g)[/tex]
Initial conc. 0.341 M 0.220 M 0 M
At eqm. conc. (0.341-x) M (0.220-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[HBr]^2}{[Br_2]\times [H_2]}[/tex]
we are given : (0.341-x) = 0.268 M
x= 0.073 M
Thus equilibrium concentration of [tex]Br_2[/tex] = (0.220-x) M = (0.220-0.073) M = 0.147 M
[tex][Br_2]=\frac{moles}{volume}\\0.147=\frac{xmole}{2.00L}\\\\x=0.294 mole[/tex]
Thus there are 0.294 mol of [tex]Br_2[/tex] present in the reaction vessel.
There are 0.294 mol of Br2 present in the reaction vessel when there is the mixture of 0.682 mol of H2 and 0.440 mol of Br_2.
Calculation of the number of moles:
Since
Initial moles of H2 is 0.682 moles
Initial moles of Br_2 = 0.440 moles
And, Volume of container = 2.00 L
So here the initial concentration of H2 is = 0.682 moles / 2 = 0.341 M
The initial concentration of Br2 = 0.440/2 = 0.220 M
And, the equilibrium concentration should be = 0.536 / 2 = 0.268 M
Now
The moles should be
= 0.147 * 2
= 0.294 moles
Learn more about moles here: https://brainly.com/question/21960832