A mixture of 0.682 mol of H2 and 0.440 mol of Br2 is combined in a reaction vessel with a volume of 2.00 L. At equilibrium at 700 K, there are 0.536 mol of H2 present. At equilibrium, there are ________ mol of Br2 present in the reaction vessel.

Respuesta :

Answer: 0.294 mol of [tex]Br_2[/tex] present in the reaction vessel.

Explanation:

Initial moles of  [tex]H_2[/tex] = 0.682 mole

Initial moles of  [tex]Br_2[/tex] = 0.440 mole

Volume of container = 2.00 L

Initial concentration of [tex]H_2=\frac{moles}{volume}=\frac{0.682moles}{2.00L}=0.341M[/tex]

Initial concentration of [tex]Br_2=\frac{moles}{volume}=\frac{0.440moles}{2.00L}=0.220M[/tex]

equilibrium concentration of [tex]H_2=\frac{moles}{volume}=\frac{0.536mole}{2.00L}=0.268M[/tex]

The given balanced equilibrium reaction is,

                            [tex]H_2(g)+Br_2(g)\rightleftharpoons 2HBr(g)[/tex]

Initial conc.              0.341 M     0.220 M         0  M

At eqm. conc.    (0.341-x) M      (0.220-x) M     (2x) M

The expression for equilibrium constant for this reaction will be,

[tex]K_c=\frac{[HBr]^2}{[Br_2]\times [H_2]}[/tex]

we are given : (0.341-x) = 0.268 M

x= 0.073 M

Thus equilibrium concentration of [tex]Br_2[/tex] = (0.220-x) M = (0.220-0.073) M = 0.147 M

[tex][Br_2]=\frac{moles}{volume}\\0.147=\frac{xmole}{2.00L}\\\\x=0.294 mole[/tex]

Thus there are 0.294  mol of [tex]Br_2[/tex] present in the reaction vessel.

There are 0.294 mol of Br2 present in the reaction vessel when there is the mixture of 0.682 mol of H2 and 0.440 mol of Br_2.

Calculation of the number of moles:

Since

Initial moles of H2 is 0.682 moles

Initial moles of Br_2 = 0.440  moles

And, Volume of container = 2.00 L

So here the initial concentration of H2 is = 0.682 moles / 2 = 0.341 M

The initial concentration of Br2 = 0.440/2  = 0.220 M

And, the equilibrium concentration should be = 0.536 / 2 = 0.268 M

Now

The moles should be

= 0.147 * 2

= 0.294 moles

Learn more about moles here: https://brainly.com/question/21960832

ACCESS MORE