Answer:
The angular acceleration is [tex]0.08rad/s^{2}[/tex] final angular speed is [tex]46rpm[/tex]
Explanation:
Here we know that
[tex]\theta= w_{o}t+\frac{1}{2}\alpha t^{2}[/tex] .............. 1
[tex]\theta = 23\times 2\pi rad[/tex]
[tex]w_{0}=0\\t=1min =60s[/tex]
Upon substituting these values in equation 1 we get [tex]\alpha =0.08rad/s^{2}[/tex].
For calculating angular velocity we know that
[tex]w=w_{o} + \alpha t[/tex].
[tex]w=\frac{46\pi}{30}rad/s = \frac{23\pi\times60}{15\times 2 \pi} rpm = 46rpm[/tex]