Answer:
[tex][Cl]_{eq}=\frac{k_1[CFCl_3]_{eq}}{k_{-1}[CFCl_2]_{eq}}[/tex]
Explanation:
Hello,
In this case, considering and rewriting the given chemical reaction, one has:
[tex]CFCl_{3}(g)\rightleftharpoons CFCl2(g)+Cl(g)[/tex]
Thus, the rate equation is written as:
[tex]-r_{CFCl_3}=k_1C_{CFCl_3}-k_{-1}C_{CFCl_2}C_{Cl}[/tex]
In such a way, for the equilibrium condition, the rate remains constant, that is equal to zero, hence:
[tex]0=k_1C_{CFCl_3}-k_{-1}C_{CFCl_2}C_{Cl}[/tex]
Solving for the concentration of Cl, one finally obtains:
[tex]C_{Cl}=\frac{k_1C_{CFCl_3}}{k_{-1}C_{CFCl_2}}[/tex]
Or:
[tex][Cl]_{eq}=\frac{k_1[CFCl_3]_{eq}}{k_{-1}[CFCl_2]_{eq}}[/tex]
Best regards.