Respuesta :

Answer:

The equation of circle is [tex](x+10)^{2}[/tex] + [tex](y+12)^{2}[/tex] = 52

Step-by-step explanation:

Given the endpoints of diameter of a circle: (-16,-16) and (-4,-8)

We know that the equation of circle is given by

[tex](x-h)^{2}[/tex] + [tex](y-k)^{2}[/tex] = [tex]r^{2}[/tex]

where (x,y) is any point on the circle, (h,k) is center of the circle and r is radius of circle.

To find (h,k): the center is midpoint of diameter

Midpoint of diameter with end points (x1,y1) and (x2,y2) is given by

(  [tex]\frac{x1+x2}{2}[/tex] , [tex]\frac{y1+y2}{2}[/tex] )

(  [tex]\frac{-16-4}{2}[/tex] , [tex]\frac{-16-8}{2}[/tex] )

(-10, -12)

Hence (h,k) is (-10,-12)

Substituting values of (h.k) and (x.y) as (-10,-12) and (-4,-8) respectively in equation of circle, we get

[tex](-4+10)^{2}[/tex] + [tex](-8+12)^{2}[/tex] = [tex]r^{2}[/tex]

[tex]r^{2}[/tex] = 52

Substituting values of (h.k) and [tex]r^{2}[/tex], we get the equation of circle as

[tex](x+10)^{2}[/tex] + [tex](y+12)^{2}[/tex] = 52

Hence the equation of circle is [tex](x+10)^{2}[/tex] + [tex](y+12)^{2}[/tex] = 52