Answer : The element is boron and ion is [tex]B^{+4}[/tex]
Explanation :
Using Rydberg's Equation:
[tex]\Delta E_n=-(13.61eV)\times Z^2\left(\frac{1}{n_f^2}-\frac{1}{n_i^2} \right )[/tex]
Where,
[tex]\Delta E_n[/tex] = change in energy
Z = atomic number
[tex]n_f[/tex] = Higher energy level = [tex]\infty[/tex]
[tex]n_i[/tex]= Lower energy level = 1
Putting the values, in above equation, we get
[tex]\Delta E_n=-(13.61eV)\times Z^2\left(\frac{1}{\infty^2}-\frac{1}{1^2} \right )[/tex]
[tex]\Delta E_n=(13.61eV)\times Z^2[/tex] ............(1)
As we know that:
[tex]\Delta E=h\nu[/tex]
[tex]\Delta E=(6.626\times 10^{-34}J.s)\times (8.225\times 10^{16}s^{-1})[/tex]
[tex]\Delta E=5.445\time3s 10^{-17}J=\frac{5.445\time3s 10^{-17}}{1.602\time3s 10^{-19}}=340.2eV[/tex] .......(2)
Now equation 1 and 2, we get:
[tex](13.61eV)\times Z^2=340.2eV[/tex]
Z = 4.99 ≈ 5
The element is boron that has atomic number 5.
As it has only one electron the charge on the B is (+4) that is, [tex]B^{+4}[/tex]
Thus, the element is boron and ion is [tex]B^{+4}[/tex]