Respuesta :
Answer:
90% confidence interval for the population mean is between a lower limit of $92.18 and an upper limit of $107.82.
Step-by-step explanation:
Confidence interval for a population mean is given as mean +/- margin of error (E)
mean = $100
sd = $25.20
n = 30
degree of freedom = n-1 = 30-1 = 29
confidence level (C) = 90% = 0.9
significance level = 1 - C = 1 - 0.9 = 0.1 = 10%
critical value (t) corresponding to 29 degrees of freedom and 10% significance level is 1.699
E = t×sd/√n = 1.699×25.20/√30 = $7.82
Lower limit of population mean = mean - E = 100 - 7.82 = $92.18
Upper limit of population mean = mean + E = 100 + 7.82 = $107.82
90% confidence interval is ($92.18, $107.82)
Answer:
90% confidence interval for the population mean is [92.18 , 107.82].
Step-by-step explanation:
We are given that as part of your study, you randomly select 30 repair costs and find the mean to be $100.00. The standard deviation of the sample is $25.20.
So, the pivotal quantity for 90% confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean = $100
s = sample standard deviation = $25.20
n = sample size = 30
[tex]\mu[/tex] = population mean
So, 90% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-1.699 < [tex]t_2_9[/tex] < 1.699) = 0.90
P(-1.699 < [tex]\frac{\bar X - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 1.699) = 0.90
P( [tex]-1.699 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]{\bar X - \mu}[/tex] < [tex]1.699 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.90
P( [tex]\bar X - 1.699 \times {\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X + 1.699 \times {\frac{s}{\sqrt{n} }[/tex] ) = 0.90
90% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X - 1.699 \times {\frac{s}{\sqrt{n} }[/tex] , [tex]\bar X + 1.699 \times {\frac{s}{\sqrt{n} }[/tex] ]
= [ [tex]100 - 1.699 \times {\frac{25.20}{\sqrt{30} }[/tex] , [tex]100 + 1.699 \times {\frac{25.20}{\sqrt{30} }[/tex] ]
= [92.18 , 107.82]
Therefore, 90% confidence interval for the population mean is [92.18 , 107.82].