Respuesta :
Answer:
Detailed step-wise solution is given below for better demonstration:


The volume of the rectangular box is given by using the Lagrangian multiplier theorem is 172.435 cubic units.
What is the Lagrangian multiplier theorem?
It states that any local maxima or any local minima of the function are calculated under the equality constraints.
The equation of ellipsoid is given as
[tex]\rm \dfrac{x^{2} }{4} + \dfrac{y^{2} }{64}+\dfrac{z^{2} }{49} = 1[/tex] ... 1
Let the edges of the required rectangular box be x, y, and z.
Then, the volume of the box in the first quadrant is V = xyz
Then we have
[tex]\rm \phi (x,y,z) = \dfrac{x^{2} }{4} + \dfrac{y^{2} }{64}+\dfrac{z^{2} }{49} -1 = 0[/tex]
By the Lagrange multiplier
[tex]\begin{aligned} \bigtriangledown V &= \lambda \bigtriangledown \phi\\\\(V_x,V_y,V_z) &= \lambda (\phi _x,\phi _y, \phi _z)\\\\(yz,xz,xy) &= \lambda (\dfrac{2x}{4},\dfrac{2y}{64},\dfrac{2z}{49}) \\\\\end{aligned}\\yz = \lambda \dfrac{x}{2}, xz = \lambda \dfrac{y}{32}, xy = \lambda \dfrac{2z}{49}\\\\xyz = \lambda \dfrac{x^{2} }{2}, xyz = \lambda \dfrac{y^2}{32}, xyz = \lambda \dfrac{2z^2}{49}\\\\[/tex]
[tex]\rightarrow \lambda \dfrac{x^2 }{2} = \lambda \dfrac{y^2 }{32} =\lambda \dfrac{2z^2 }{49}\\\\\rightarrow \dfrac{x^2}{2} = \dfrac{y^2}{32} =\dfrac{2z ^2}{49} = k \ \ \ (since \lambda \neq 0)\\\\\rightarrow x^2= 2k , y^2=32k, z^2 = \dfrac{49k}{2}\\[/tex]... 2
Put in equation 1, we have
[tex]\begin{aligned} \dfrac{x^{2} }{4} + \dfrac{y^{2} }{64}+\dfrac{z^{2} }{49} -1 &= 0\\\\\dfrac{2k }{4} + \dfrac{32k }{64}+\dfrac{ 49k}{2*49} -1 &= 0\\\\k (\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}) &= 1\\\\k &= \dfrac{2}{3} \end{aligned}[/tex]
Put k = 2/3 in equation 2, we have
[tex]\rm x^2 = 2* \dfrac{2}{3}, y^2 = 32* \dfrac{2}{3}, z^2 = \dfrac{49}{2}* \dfrac{2}{3} \\\\x = \pm \dfrac{2}{\sqrt{3}},y = \pm \dfrac{8}{\sqrt{3}}, z = \pm \dfrac{7}{sqrt{3}}[/tex]
Then the volume of the rectangular box will be
[tex]\rm Volume = \dfrac{2}{\sqrt{3}}*\dfrac{8}{\sqrt{3}}*\dfrac{7}{\sqrt{3}}\\\\Volume = \dfrac{896}{3 \sqrt{3}} = 172.435[/tex]
More about the Lagrangian multiplier theorem link is given below.
https://brainly.com/question/7227603