Respuesta :
Answer:
- 0.2215 inch
- 0.1918 inch
Explanation:
Make assumptions like considering the cylinder to be thin
first we calculate the hoop stress
∝1 = [tex]\frac{pd}{2t}[/tex]
p = 300 psi
d = 12 inches
= [tex]\frac{300 * 12 }{2t}[/tex] = 1800 / t
secondly we calculate the longitudinal stress
∝2 = [tex]\frac{pd}{4t}[/tex] = [tex]\frac{300 *12}{4t}[/tex] = 900 / t
∝3 = 0
These stress are the principal stresses found in thin cylinders
to determine the allowable wall thickness
A) using the Tresca criterion
( т max) absolute = [tex]\frac{Syt}{2n}[/tex]
∝1 - ∝3 / 2 = [tex]\frac{Syt}{2n}[/tex]
= 1800 / t = 32.5 * 10^3 / 4
t = 7200 / 32500 = 0.2215
B) using the Von Mises criterion
∝1² + ∝2² - ∝1∝2 = [tex](\frac{Syt}{n})^{2}[/tex]
( 1800 / t )^2 + ( 900 / t ) ^2 - [tex]\frac{1800}{t} * \frac{900}{t}= (\frac{32.5 *10^{3} }{4} )^{2}[/tex]
= (243 *10^4 ) / t^2 = ( 32500 / 4 )^2
= (243 * 10^4) / t^2 = 66*10^6
t = [tex]\sqrt{0.0368}[/tex] = 0.1918 inches