A large storage tank, open to the atmosphere at the top and fi lled with water, develops a small hole in its side at a point 16.0 m below the water level. If the rate of fl ow from the leak is 2.50 103 m3 /min, determine (a) the speed at which the water leaves the hole and (b) the diameter of the hole

Respuesta :

Answer:

The speed at which the water leaves the hole [tex]V_{2}[/tex] = 4.21 [tex]\frac{m}{s}[/tex]

The value of  diameter of the hole d = 0.112 m = 11.2 cm

Step-by-step explanation:

Given data

Flow rate = 2.5 × [tex]10^{-3}[/tex] [tex]\frac{m^{3} }{min}[/tex] = 0.0416 × [tex]10^{-3}[/tex] [tex]\frac{m^{3} }{sec}[/tex]

Height (h) = 16 m

(a) The speed at which the water leaves the hole :-

Apply bernouli equation for the water tank at point 1 & 2

[tex]\frac{P_{1} }{\rho g} + \frac{V_{1} ^{2} }{2g} + Z_{1} = \frac{P_{2} }{\rho g} + \frac{V_{2} ^{2} }{2g} + Z_{2}[/tex] ------ (1)

Since [tex]P_{1}[/tex] = [tex]P_{2}[/tex] , [tex]V_{1} = 0[/tex] & [tex]Z_{1} - Z_{2} = h[/tex]

Equation (1) becomes

[tex]\frac{V_{2}^{2} }{2 g} = h[/tex]

[tex]V_{2}[/tex] = [tex]\sqrt{2 g h}[/tex]

This is the speed at which the water leaves the hole.

Put the values of g & h in the above formula

⇒ 2 g h = 2 × 9.81 × 16 = 17.71

[tex]V_{2}[/tex] = [tex]\sqrt{2 g h}[/tex] = [tex]\sqrt{17.71}[/tex]

[tex]V_{2}[/tex] = 4.21 [tex]\frac{m}{s}[/tex]

This is the speed at which the water leaves the hole.  

(b)Diameter of the hole :-

We know that flow rate Q = A × V

[tex]A = \frac{Q}{V}[/tex]

Put the values of Q & V in the above formula we get

A =  [tex]\frac{0.0416}{4.21}[/tex] × [tex]10^{-3}[/tex]

A = 9.88 × [tex]10^{-6}[/tex]

We know that area A = [tex]\frac{\pi}{4} d^{2}[/tex]

⇒ [tex]d^{2}[/tex] = [tex]\frac{4}{\pi}[/tex] × 9.88 × [tex]10^{-6}[/tex]

⇒ [tex]d^{2}[/tex] = 0.01258

⇒ d = 0.112 m = 11.2 cm

this is the value of  diameter of the hole.

ACCESS MORE