Answer:
The speed at which the water leaves the hole [tex]V_{2}[/tex] = 4.21 [tex]\frac{m}{s}[/tex]
The value of diameter of the hole d = 0.112 m = 11.2 cm
Step-by-step explanation:
Given data
Flow rate = 2.5 × [tex]10^{-3}[/tex] [tex]\frac{m^{3} }{min}[/tex] = 0.0416 × [tex]10^{-3}[/tex] [tex]\frac{m^{3} }{sec}[/tex]
Height (h) = 16 m
(a) The speed at which the water leaves the hole :-
Apply bernouli equation for the water tank at point 1 & 2
[tex]\frac{P_{1} }{\rho g} + \frac{V_{1} ^{2} }{2g} + Z_{1} = \frac{P_{2} }{\rho g} + \frac{V_{2} ^{2} }{2g} + Z_{2}[/tex] ------ (1)
Since [tex]P_{1}[/tex] = [tex]P_{2}[/tex] , [tex]V_{1} = 0[/tex] & [tex]Z_{1} - Z_{2} = h[/tex]
Equation (1) becomes
[tex]\frac{V_{2}^{2} }{2 g} = h[/tex]
[tex]V_{2}[/tex] = [tex]\sqrt{2 g h}[/tex]
This is the speed at which the water leaves the hole.
Put the values of g & h in the above formula
⇒ 2 g h = 2 × 9.81 × 16 = 17.71
[tex]V_{2}[/tex] = [tex]\sqrt{2 g h}[/tex] = [tex]\sqrt{17.71}[/tex]
[tex]V_{2}[/tex] = 4.21 [tex]\frac{m}{s}[/tex]
This is the speed at which the water leaves the hole.
(b)Diameter of the hole :-
We know that flow rate Q = A × V
[tex]A = \frac{Q}{V}[/tex]
Put the values of Q & V in the above formula we get
A = [tex]\frac{0.0416}{4.21}[/tex] × [tex]10^{-3}[/tex]
A = 9.88 × [tex]10^{-6}[/tex]
We know that area A = [tex]\frac{\pi}{4} d^{2}[/tex]
⇒ [tex]d^{2}[/tex] = [tex]\frac{4}{\pi}[/tex] × 9.88 × [tex]10^{-6}[/tex]
⇒ [tex]d^{2}[/tex] = 0.01258
⇒ d = 0.112 m = 11.2 cm
this is the value of diameter of the hole.