The given question is incomplete. The complete question is :
Carbon tetrachloride can be produced by the following reaction:
[tex]CS_2(g)+3Cl_2(g)\rightleftharpoons S_2Cl_2(g)+CCl_4(g)[/tex]
Suppose 1.20 mol [tex]CS_2(g)[/tex] of and 3.60 mol of [tex]Cl_2(g)[/tex] were placed in a 1.00-L flask at an unknown temperature. After equilibrium has been achieved, the mixture contains 0.72 mol of [tex]CCl_4[/tex]. Calculate equilibrium constant at the unknown temperature.
Answer: The equilibrium constant at unknown temperature is 0.36
Explanation:
Moles of [tex]CS_2[/tex] = 1.20 mole
Moles of [tex]Cl_2[/tex] = 3.60 mole
Volume of solution = 1.00 L
Initial concentration of [tex]CS_2[/tex] = [tex]\frac{moles}{volume}=\frac{1.20mol}{1L}=1.20M[/tex]
Initial concentration of [tex]Cl_2[/tex] = [tex]\frac{moles}{volume}=\frac{3.60mol}{1L}=3.60M[/tex]
The given balanced equilibrium reaction is,
[tex]CS_2(g)+3Cl_2(g)\rightleftharpoons S_2Cl_2(g)+CCl_4(g)[/tex]
Initial conc. 1.20 M 3.60 M 0 0
At eqm. conc. (1.20-x) M (3.60-3x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[S_2Cl_2]\times [CCl_4]}{[Cl_2]^3[CS_2]}[/tex]
Now put all the given values in this expression, we get :
[tex]K_c=\frac{(x)\times (x)}{(3.60-3x)^3\times (1.20-x)}[/tex]
Given :Equilibrium concentration of [tex]CCl_4[/tex] , x = [tex]\frac{moles}{volume}=\frac{0.72mol}{1L}=0.72M[/tex]
[tex]K_c=\frac{(0.72)\times (0.72)}{(3.60-3\times 0.72)^3\times (1.20-0.72)}[/tex]
[tex]K_c=0.36[/tex]
Thus equilibrium constant at unknown temperature is 0.36