Answer:
a) μ = 99 σ = 3.333
b) μ = 99 σ = 2.673
c) μ = 99 σ = 1.69
d) μ = 99 σ = 1.291
e) μ = 99 σ = 0.913
f) μ = 99 σ = 0.456
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sample means with size n of at least 30 can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
In this problem, we have that:
[tex]\mu = 99, \sigma = 10[/tex]
(a) n=9 μ = σ =
[tex]\mu = 99, s = \frac{10}{\sqrt{9}} = 3.333[/tex]
(b) n=14 μ = σ =
[tex]\mu = 99, s = \frac{10}{\sqrt{14}} = 2.673[/tex]
(c) n=35 μ = σ =
[tex]\mu = 99, s = \frac{10}{\sqrt{35}} = 1.69[/tex]
(d) n=60 μ = σ =
[tex]\mu = 99, s = \frac{10}{\sqrt{60}} = 1.291[/tex]
(e) n=120 μ = σ =
[tex]\mu = 99, s = \frac{10}{\sqrt{120}} = 0.913[/tex]
(f) n=480 μ = σ =
[tex]\mu = 99, s = \frac{10}{\sqrt{480}} = 0.456[/tex]