Answer:
The answer is given below:
Step-by-step explanation:
Let u= tx, v= ty Then
d/dt [(f (u,v)] = nt^n-1 f (x,y)
Chain rule formula gives:
∂f/∂u x du/dt + ∂f/∂v x dv/dt = nt^n-1 f (x,y)
Therefore, x ∂f/∂u + y ∂f/∂v = nt^n-1 f (x,y)-------- eq. 1
Put t=1 in eq. 1 :
=> x∂f/∂x + y ∂f/∂u = nf (x,y)