Answer with Explanation:
We are given that
Resistance of solenoid,R=4.3 ohm
Magnetic field,B=[tex]3.7\times 10^{-2} T[/tex]
Current,I=4.6 A
Diameter of wire,d=0.5 mm=[tex]0.5\times 10^{-3} m[/tex]
Radius of wire,r=[tex]\frac{d}{2}=\frac{0.5\times 10^{-3}}{2}=0.25\times 10^{-3} m[/tex]
[tex]1mm=10^{-3} m[/tex]
Radius of solenoid,r'=1 cm=[tex]1\times 10^{-2} m[/tex]
[tex]1 cm=10^{-2} m[/tex]
Resistivity of copper,[tex]\rho=1.68\times 10^{-8}\Omega m[/tex]
We know that
[tex]R=\frac{\rho l}{A}[/tex]
Where [tex]A=\pi r^2[/tex]
Using the formula
[tex]4.3=\frac{1.68\times 10^{-8}\times l}{\pi(0.25\times 10^{-3})^2}[/tex]
[tex]l=\frac{4.3\times \pi(0.25\times 10^{-3})^2}{1.68\times 10^{-8}}=50.23 m[/tex]
Number of turns of wire=[tex]\frac{l}{2\pi r'}[/tex]
Number of turns of wire=[tex]\frac{50.26}{2\pi(1\times 10^{-2}}=800[/tex]
Hence, the number of turns of the solenoid,N=799
Magnetic field in solenoid,B=[tex]\mu_0 nI[/tex]
[tex]3.7\times 10^{-2}=4\pi\times 10^{-7} n\times 4.6[/tex]
[tex]n=\frac{3.7\times 10^{-2}}{4\times 3.14\times 10^{-7}\times 4.6}[/tex]
[tex]n=6404 turns/m[/tex]
[tex]n=\frac{N}{L}[/tex]
[tex]L=\frac{N}{n}[/tex]
[tex]L=\frac{799}{6404}[/tex]
[tex]L=0.125 m=0.125\times 100=12.5 cm[/tex]
Length of solenoid=12.5 cm
1m=100 cm