We want to construct a solenoid with a resistance of 4.30 Ω and generate a magnetic field of 3.70 × 10−2 T at its center when applying 4.60 A of electrical current. We want to use copper wire with a diameter of 0.500 mm. If we need the solenoid's radius to be 1.00 cm, how many turns of wire will be need? 2 78 256 790 Then, what would be the required length of the solenoid? 12.3 cm

Respuesta :

Answer with Explanation:

We are given that

Resistance of solenoid,R=4.3 ohm

Magnetic field,B=[tex]3.7\times 10^{-2} T[/tex]

Current,I=4.6 A

Diameter of wire,d=0.5 mm=[tex]0.5\times 10^{-3} m[/tex]

Radius of wire,r=[tex]\frac{d}{2}=\frac{0.5\times 10^{-3}}{2}=0.25\times 10^{-3} m[/tex]

[tex]1mm=10^{-3} m[/tex]

Radius of solenoid,r'=1 cm=[tex]1\times 10^{-2} m[/tex]

[tex]1 cm=10^{-2} m[/tex]

Resistivity of copper,[tex]\rho=1.68\times 10^{-8}\Omega m[/tex]

We know that

[tex]R=\frac{\rho l}{A}[/tex]

Where [tex]A=\pi r^2[/tex]

Using the formula

[tex]4.3=\frac{1.68\times 10^{-8}\times l}{\pi(0.25\times 10^{-3})^2}[/tex]

[tex]l=\frac{4.3\times \pi(0.25\times 10^{-3})^2}{1.68\times 10^{-8}}=50.23 m[/tex]

Number of turns of wire=[tex]\frac{l}{2\pi r'}[/tex]

Number of turns of wire=[tex]\frac{50.26}{2\pi(1\times 10^{-2}}=800[/tex]

Hence, the number of turns of the  solenoid,N=799

Magnetic field in solenoid,B=[tex]\mu_0 nI[/tex]

[tex]3.7\times 10^{-2}=4\pi\times 10^{-7} n\times 4.6[/tex]

[tex]n=\frac{3.7\times 10^{-2}}{4\times 3.14\times 10^{-7}\times 4.6}[/tex]

[tex]n=6404 turns/m[/tex]

[tex]n=\frac{N}{L}[/tex]

[tex]L=\frac{N}{n}[/tex]

[tex]L=\frac{799}{6404}[/tex]

[tex]L=0.125 m=0.125\times 100=12.5 cm[/tex]

Length of solenoid=12.5 cm

1m=100 cm

ACCESS MORE