Step-by-step explanation:
The total length of the wire = 40 cm
Let us assume the circumference of the circle = k cm
So, the circumference of the square = ( 40 - k) cm
Now,as circumference of circle = 2πR
⇒2πR = k cm or, R = [tex](\frac{k}{2\pi})[/tex]
Area of the circle = πR²
or, A = [tex]\pi (\frac{k}{2\pi} )^2[/tex]
[tex]= \pi \times (\frac{k^2}{(2\pi)^2} ) = \frac{k^2}{4 \pi} \\\implies A = \frac{k^2}{4 \pi}[/tex] ....... (1)
Similarly , perimeter of square = 4 x Side
⇒ 4 x Side = ( 40 - k) cm ⇒ S = [tex](\frac{40 - k}{4} )[/tex]
Area of the square = (Side)² = [tex](\frac{40 - k}{4} ) ^2[/tex]
Solving, we get: [tex]A = \frac{1600 + k^2 - 80 k}{16}[/tex] ....... (1)
So, combining (1) and (2), total area A is
[tex]A = (\frac{k^2}{4 \pi} ) + \frac{k^2 + 1600 - 80 k }{16}[/tex]
or, we get: A = 0.07962 k² + 0.0625 k² + 100 - 5 k
A = 0.1422 k² - 5 k + 100
For axis of symmetry : [tex]k = (\frac{-b}{2a} ) = (-\frac{-5}{2(0.1420}) = 17.6[/tex]
⇒ k = 17.6 inches
So, the perimeter of circle = 17.6 cm
Perimeter of square = (40 - 17.6 ) = 22.4 cm