Respuesta :
Answer:
The length and width of plot is [tex]L=300\:ft[/tex], [tex]W=150\:ft[/tex]
Largest area of the plot is [tex]A=45000 ft^{2} [/tex]
Step-by-step explanation:
Assume width as x and length as y. Given that length of fencing is 600 feet and fencing is enclosed on 3 sides. So perimeter is given as,
Perimeter = width + length + width
Substituting the value,
[tex] 600=x+y+x[/tex]
[tex]600= 2x+y [/tex] ….1
Now area of fence of rectangular box is given as follows,
[tex] A=xy [/tex] ….2
Solving equation 1 for y, subtracting 2x from both sides,
[tex]600-2x= y [/tex]
Substituting the value in equation 2,
[tex] A=x\left (600-2x \right )[/tex]
Simplifying
[tex] A=600x-2x^{2}[/tex]
Rewriting,
[tex] A=-2x^{2}+600x [/tex]
Above equation looks like quadratic equation [tex] f\left ( x \right )=ax^{2}+bx+c[/tex] whose graph looks like parabola.
Comparing equation f(x) and A values of a, b and c are, [tex] a=-2,b=600[/tex] and [tex] c=0[/tex].
Now maximum of [tex] f\left ( x \right )[/tex] occurs at vertex.
The x coordinate of the vertex is given as [tex] -\dfrac{b}{2a}[/tex]
Substituting the values,
[tex] x=-\dfrac{600}{2\left (-2 \right )} [/tex]
Simplifying,
[tex] x=\dfrac{600}{4} [/tex]
[tex] x=150 [/tex]
So width of plot is 150 feet.
Now to calculate value of length by using equation 1,
[tex]600= 2x+y [/tex]
Substituting the values,
[tex]600= 2\left (150 \right )+y [/tex]
[tex]600= 300+y [/tex]
Subtracting 300 from both sides,
[tex]300= y [/tex]
So length of plot is 300 ft.
The y coordinate of the vertex is given as [tex] y=f\left ( -\dfrac{b}{2a} \right ) [/tex] which also means, [tex] y=f\left ( 150 \right ) [/tex]
[tex]\therefore A=-2\left (150 \right )^{2}+600\left (150 \right )[/tex]
Simplifying,
[tex]\therefore A=-2\left (22500 \right )^{2}+600\left (150 \right )[/tex]
[tex]\therefore A=-45000+90000[/tex]
[tex]\therefore A=45000 [/tex]
So, area of the plot will be [tex]A=45000 ft^{2} [/tex]
![Ver imagen neha678](https://us-static.z-dn.net/files/d20/2e52cebb829cf0e0c57bff76a9bf66b3.jpg)