Answer:
[tex]T = 49.641\,^{\textdegree}C[/tex]
Explanation:
The compressor is modelled by means of the First Law of Thermodynamics:
[tex]\dot W_{in} + \dot m \cdot (h_{in}-h_{out}) = 0[/tex]
The mass flow rate can be found by using the following expression:
[tex]\dot m = \frac{\dot V}{\nu_{in}}[/tex]
The properties of the refrigerant at inlet are:
State - Saturated Vapor
[tex]P = 180\,kPa[/tex]
[tex]T_{sat} = 12.73\,^{\textdegree}C[/tex]
[tex]\nu_{in} = 0.11049\,\frac{m^{3}}{kg}[/tex]
[tex]h_{in}= 242.90\,\frac{kJ}{kg}[/tex]
The mass flow rate is:
[tex]\dot m = \frac{(0.35\,\frac{m^{3}}{min} )\cdot(\frac{1\,min}{60\,s} )}{0.11049\,\frac{m^{3}}{kg} }[/tex]
[tex]\dot m = 0.053\,\frac{kg}{s}[/tex]
The specific enthalpy at outlet is:
[tex]h_{out} = h_{in}+\frac{\dot W_{in}}{\dot m}[/tex]
[tex]h_{out} = 242.90\,\frac{kJ}{kg} + \frac{2.2\,kW}{0.053\,\frac{kg}{s} }[/tex]
[tex]h_{out} = 284.409\,\frac{kJ}{kg}[/tex]
The state of the fluid at outlet has the characteristics of superheated vapor. The temperature associated the specific enthalpy is:
[tex]T = 49.641\,^{\textdegree}C[/tex]