Answer:
0.6
Explanation:
[tex]I_i[/tex] = Initial intensity
E denotes amplitude
Final intensity is
[tex]I_f=(1-0.64)I_i=0.36I_i[/tex]
We have the relation
[tex]\dfrac{E_i^2}{E_f^2}=\dfrac{I_i}{I_f}\\\Rightarrow \dfrac{E_i^2}{E_f^2}=\dfrac{I_f}{0.36I_i}\\\Rightarrow \dfrac{E_i^2}{E_f^2}=\dfrac{1}{0.36}\\\Rightarrow \dfrac{E_f^2}{E_i^2}=0.36\\\Rightarrow E_f^2=0.36E_i^2\\\Rightarrow E_f=0.6E_i[/tex]
The amplitude changes by a factor of 0.6