(a) Use a Riemann sum with m = n = 2 to estimate the value of the sin(x + y) dA R where R = [0, π] × [0, π]. Take the sample points to be lower left corners. (Round your answer to three decimal places.)

Respuesta :

Answer:

4.9361

Step-by-step explanation:

Rieman sum = ∫∫[tex]sin(x+y)[/tex]ΔA

ΔA = ΔxΔy

Δx = [tex]\frac{π -0}{2}[/tex]  = [tex]\frac{π}{2}[/tex] = pi/2 = Δy

ΔA =  pi/2 * pi/2 = [tex]\frac{pi^{2} }{4}[/tex]

Evaluating at the four corners

[tex]f(0,0) + f(0, pi/2) + f(pi/2,0) + f(pi/2, pi/2)[/tex] =

[tex]sin(0 +0) + sin(0 + pi/2) + sin(pi/2 + 0) + sin(pi/2 , pi/2) = 0 +1 + 1 + 0[/tex] = 2

∫∫[tex]sin(x+y)[/tex]ΔA = 2 * [tex]\frac{pi^{2} }{4}[/tex]  = [tex]\frac{pi^{2} }{2}[/tex] = 4.9361

ACCESS MORE