Answer:
Therefore, exists 1188 different types of meals.
Step-by-step explanation:
We know that the restaurant has 6 different appetizers, 3 different soups, 11 different entrees, and 6 different desserts.
So of the 6 appetizers we choose 1.
So of the 3 soups we choose 1.
So of the 11 entrees we choose 1.
So of the 6 desserts we choose 1.
We calculate:
[tex]C_1^{6}\cdot C_1^{3}\cdot C_1^{11}\cdot C_1^{6}=\frac{6!}{1!(6-1)!}\cdot \frac{3!}{1!(3-1)!}\cdot \frac{11!}{1!(11-1)!}\cdot \frac{6!}{1!(6-1)!}= 6\cdot 3 \cdot 11\cdot 6=1188[/tex]
Therefore, exists 1188 different types of meals.