A volume of 120 mL of H2O is initially at room temperature (22.00 ∘C ). A chilled steel rod at 2.00 ∘C ∘C is placed in the water. If the final temperature of the system is 21.50 ∘C ∘C , what is the mass of the steel bar? Use the following values: specific heat of water = 4.18 J/(g⋅∘C)J/(g⋅∘C) specific heat of steel = 0.452 J/(g⋅∘C)

Respuesta :

znk

Answer:

[tex]\large \boxed{\text{28.5 g}}[/tex]

Explanation:

There are two heat flows in this process and, since energy (heat) can neither be destroyed nor created, the energy change for the system must equal zero.

Data:

For Fe,    m₁ = ?;         C₁ = 0.452 J°C⁻¹g⁻¹; Ti =   2.00 °C; T_f = 21.50 °C

For H₂O, m₂ = 120 g; C₂ = 4.18    J°C⁻¹g⁻¹; Ti = 22.00 °C; T_f = 21.50 °C

Calculations:

1. Temperature changes

ΔT₁ = T_f - Ti = 21.50 °C -   2.00 °C = 19.50 °C

ΔT₂ = T_f - Ti = 21.50 °C - 22.00 °C = -0.50 °C

2. Mass of steel rod

[tex]\begin{array}{ccl}\text{Heat gained by steel rod + heat lost by water} & = & 0\\m_{1}C_{1} \Delta T_{1} + m_{2}C_{2} \Delta T_{2}& = & 0\\m_{1} \times 0.452 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}\times 19.50 \, ^{\circ}\text{C} + \text{120 g} \times 4.18\text{ J$^{\circ}$C$^{-1}$g$^{-1}$} \times (-0.50)\, ^{\circ}\text{C}& = & 0\\8.814m_{1}\text{ g}^{-1} - 250.8 & = &0\\\end{array}\\[/tex]

[tex]\begin{array}{ccl}8.814m_{1}\text{ g}^{-1} & = &250.8\\m_{1} & = & \dfrac{250.8}{\text{8.814 g}^{-1}}\\\\& = & \textbf{28.5 g}\\\end{array}\\\text{The mass of the steel rod is $\large \boxed{\textbf{28.5 g}}$}[/tex]

The mass of the steel bar is "28.5 g"

According to the question,

Mass,

  • m = 120 mL

Specific heat of steel,

  • c = 0.452 J/(g⋅°C)

Specific heat of water,

  • c = 4.18 J/(g⋅°C)

Temperature,

  • 2°C
  • 22°C
  • 21.5°C

As we know,

      Heat lost by water = Heat gained by steel

then,

→                            [tex]mc \Delta T = mc \Delta T[/tex]

By substituting the values, we get

→ [tex]120\times 4.18\times (22-21.5) = m\times 0.452\times (21.5-2)[/tex]

→                                    [tex]m = \frac{120\times 4.18\times 0.5}{0.452\times 19.5}[/tex]

→                                         [tex]= \frac{250.8}{8.814}[/tex]

→                                         [tex]= 28.5 \ g[/tex]

Thus the above answer is appropriate.

Learn more:

https://brainly.com/question/15242808

ACCESS MORE