Answer:
We get that the heaviest of fruits weigh 766.84 grams.
Step-by-step explanation:
We know that a particular fruit's weights are normally distributed, with a mean of 738 grams and a standard deviation of 14 grams.
We have:
[tex]\mu=738\\\\\sigma=14[/tex]
We calculate x:
[tex]P(X<x)=1-0.02\\\\P\left(\frac{X-\mu}{\sigma}<\frac{x-\mu}{\sigma}\right)=0.98\\\\P\left(\frac{X-738}{14}<\frac{x-738}{14}\right)=0.98\\\\P\left(Z<\frac{x-738}{14}\right)=0.98\\[/tex]
We use the standard normal table and we get: Z=2.06.
So, we get
[tex]2.06=\frac{x-738}{14}\\\\x-738=28.84\\\\x=766.84[/tex]
We get that the heaviest of fruits weigh 766.84 grams.