Answer: [tex]d=1.43g/L[/tex] at STP, [tex]d=1.26g/L[/tex] at 1 atm and [tex]35^0C[/tex]
Explanation:
To calculate the density of gas, we use the equation given by ideal gas equation:
[tex]PV=nRT[/tex]
Number of moles (n) can be written as: [tex]n=\frac{m}{M}[/tex]
where, m = given mass
M = molar mass
[tex]PV=\frac{m}{M}RT\\\\PM=\frac{m}{V}RT[/tex]
where,
[tex]\frac{m}{V}=d[/tex] which is known as density of the gas
The relation becomes:
[tex]PM=dRT[/tex]
Density at STP :
M = molar mass of oxygen = 32 g/mol
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature of the gas = 273 K (at STP)
P = pressure of the gas = 1.00 atm (at STP)
Putting values in equation 1, we get:
[tex]1.00atm\times 32g/mol=d\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 273K[/tex]
[tex]d=1.43g/L[/tex]
Density at 1 atm and [tex]35.0^0C[/tex] :
M = molar mass of oxygen = 32 g/mol
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature of the gas = [tex]35^0C=(35+273)K=308K[/tex]
P = pressure of the gas = 1.00 atm
Putting values in equation 1, we get:
[tex]1.00atm\times 32g/mol=d\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 308K[/tex]
[tex]d=1.26g/L[/tex]