Respuesta :
Answer:
541.14 m/s
Explanation:
We are given that
Mass of cannon=[tex]m_1=5.71\times 10^3 kg[/tex]
Mass of shell,[tex]m_2=73.5 kg[/tex]
Initial velocity of shell,v=547 m/s
We have to find the velocity of shell fired from this loose cannon.
According to law of conservation of momentum
[tex]m_1v_1+m_2v_2=m_1u_1+m_2u_2[/tex]
Initial momentum of system=0
[tex]m_1v_1=-m_2v_2[/tex]
[tex]v_1=-\frac{m_2v_2}{m_1}[/tex]
When the cannon is bolted to the ground then only shell moves and kinetic energy of system equals to kinetic energy of shell
Kinetic energy of shell,[tex]K.E=\frac{1}{2}mv^2=\frac{1}{2}\times 73.5(547)^2}=1.09\times 10^7 J[/tex]
K.E of shell=[tex]\frac{1}{2}m_1v^2_1+\frac{1}{2}m_2v^2_2[/tex]
K.E of shell=[tex]\frac{1}{2}m_1(-\frac{m_2v_2}{m_1})^2+\frac{1}{2}m_2v^2_2[/tex]
K.E of shell=[tex]\frac{1}{2}(\frac{m^2_2v^2_2}{m_1}+\frac{1}{2}m_2v^2_2)[/tex]
2K.E of shell=[tex]m_2v^2_2(\frac{m_2}{m_1}+1)[/tex]
Velocity of shell fired from this loose cannon,v_2=[tex]\sqrt{\frac{2k.E}{m_2(\frac{m_2}{m_1}+1)}[/tex]
[tex]v_2=\sqrt{\frac{2\times 1.09\times 10^7}{73.5(\frac{73.5}{5.71\times 10^3}+1)}[/tex]
[tex]v_2=541.14m/s[/tex]
Hence, the velocity of shell fired from this loose cannon would be 541.14 m/s