You toss a rock of mass mm vertically upward. Air resistance can be neglected. The rock reaches a maximum height hh above your hand. What is the speed of the rock when it is at height h/4h/4?

Respuesta :

Answer:

The speed of the rock when it is at height h/4 is [tex]\dfrac{\sqrt{3gh} }{2}[/tex].

Explanation:

At maximum height the final velocity of the rock is equal to 0. Let u is the initial velocity of the rock. Using the conservation of energy to find it as :

[tex]u^2=2gh[/tex].......(1)

We need to find the speed of the rock when it is at height h/4. Let v' is the speed. Using 3rd equation of motion as :

[tex]v'^2=u^2+2as[/tex]

here a = -g and s = h/4

[tex]v'^2=u^2-2g\times \dfrac{h}{4}[/tex]

Using equation (1) :

[tex]v'^2=(2gh)-2g\times \dfrac{h}{4}\\\\v'^2=\dfrac{3gh}{4}\\\\v'=\dfrac{\sqrt{3gh} }{2}[/tex]

So, the speed of the rock when it is at height h/4 is [tex]\dfrac{\sqrt{3gh} }{2}[/tex]. Hence, this is the required solution.

Answer:

[tex]3.83\sqrt{h} m/s[/tex]

Explanation:

We are given that

Mass of rock=m

We have to find the speed of the rock when it is at height h/4

When the rock reaches at maximum height then speed,v=0

Let u be the initial velocity of rock=u

We know that

[tex]v^2-u^2=-2gh[/tex]

[tex]0-u^2=-2gh[/tex]

[tex]-u^2=-2gh[/tex]

[tex]u^2=2gh[/tex]

When h=h/4

[tex]v'^2-u^2=-2g\times \frac{h}{4}=-\frac{gh}{2}[/tex]

[tex]v'^2-2gh=-\frac{gh}{2}[/tex]

[tex]v'^2=2gh-\frac{gh}{2}=\frac{4gh-gh}{2}=\frac{3gh}{2}[/tex]

[tex]v'=\sqrt{\frac{3gh}{2}}[/tex]

Substitute[tex]g=9.8m/s^2[/tex]

[tex]v'=\sqrt{\frac{3\times 9.8h}{2}}=3.83\sqrt h[/tex] m/s

ACCESS MORE