Respuesta :
Answer:
The speed of the rock when it is at height h/4 is [tex]\dfrac{\sqrt{3gh} }{2}[/tex].
Explanation:
At maximum height the final velocity of the rock is equal to 0. Let u is the initial velocity of the rock. Using the conservation of energy to find it as :
[tex]u^2=2gh[/tex].......(1)
We need to find the speed of the rock when it is at height h/4. Let v' is the speed. Using 3rd equation of motion as :
[tex]v'^2=u^2+2as[/tex]
here a = -g and s = h/4
[tex]v'^2=u^2-2g\times \dfrac{h}{4}[/tex]
Using equation (1) :
[tex]v'^2=(2gh)-2g\times \dfrac{h}{4}\\\\v'^2=\dfrac{3gh}{4}\\\\v'=\dfrac{\sqrt{3gh} }{2}[/tex]
So, the speed of the rock when it is at height h/4 is [tex]\dfrac{\sqrt{3gh} }{2}[/tex]. Hence, this is the required solution.
Answer:
[tex]3.83\sqrt{h} m/s[/tex]
Explanation:
We are given that
Mass of rock=m
We have to find the speed of the rock when it is at height h/4
When the rock reaches at maximum height then speed,v=0
Let u be the initial velocity of rock=u
We know that
[tex]v^2-u^2=-2gh[/tex]
[tex]0-u^2=-2gh[/tex]
[tex]-u^2=-2gh[/tex]
[tex]u^2=2gh[/tex]
When h=h/4
[tex]v'^2-u^2=-2g\times \frac{h}{4}=-\frac{gh}{2}[/tex]
[tex]v'^2-2gh=-\frac{gh}{2}[/tex]
[tex]v'^2=2gh-\frac{gh}{2}=\frac{4gh-gh}{2}=\frac{3gh}{2}[/tex]
[tex]v'=\sqrt{\frac{3gh}{2}}[/tex]
Substitute[tex]g=9.8m/s^2[/tex]
[tex]v'=\sqrt{\frac{3\times 9.8h}{2}}=3.83\sqrt h[/tex] m/s