Respuesta :
Answer: The value of [tex]K_b[/tex] for weak base is [tex]1.499\times 10^{-6}[/tex]
Explanation:
We are given:
Moles of unknown weak base = 0.0100 moles
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}} [/tex]
Molarity of nitric acid = 0.100 M
Volume of solution = 40.0 mL
Putting values in above equation, we get:
[tex]0.100M=\frac{\text{Moles of nitric acid}\times 1000}{40mL}\\\\\text{Moles of nitric acid}=\frac{(0.100\times 40}{1000}=0.004mol[/tex]
The chemical reaction for unknown weak base (BOH) and nitric acid follows the equation:
[tex]BOH+HNO_3\rightarrow BNO_3+H_2O[/tex]
Initial: 0.0100 0.004
Final: 0.006 - 0.004
Volume of solution = 100 + 40 = 140 mL = 0.140 L (Conversion factor: 1 L = 1000 mL)
To calculate the pOH of basic buffer, we use the equation given by Henderson Hasselbalch:
[tex]pOH=pK_a+\log(\frac{[salt]}{[base]})[/tex]
[tex]pOH=pK_b+\log(\frac{[BNO_3]}{[BOH]})[/tex]
We are given:
[tex]pK_b[/tex] = negative logarithm of acid dissociation constant of formic acid = ?
[tex][BNO_3]=\frac{0.004}{0.140}[/tex]
[tex][BOH]=\frac{0.006}{0.140} [/tex]
pH = 8.00
pOH = 14 - pH = 14 - 8 = 6
Putting values in above equation, we get:
[tex]6=pK_b+\log(\frac{0.006/0.140}{0.004/0.140})\\\\pK_b=5.824[/tex]
We know that:
[tex]pK_b=-\log K_b[/tex]
[tex]5.824=-\log K_b\\\\K_b=10^{-5.824}=1.499\times 10^{-6}[/tex]
Hence, the value of [tex]K_b[/tex] for weak base is [tex]1.499\times 10^{-6}[/tex]