Answer:
Present value of the obligations $ 697,064
Cash contributions (annuity-due):
Annual payment $ 259,126.684
Explanation:
We solve for the PV of each annuity:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
Tinkers
[tex]32000 \times \frac{1-(1+0.12)^{-13} }{0.12} = PV\\[/tex]
PV $205,553.5493
Evers:
[tex]37000 \times \frac{1-(1+0.12)^{-13} }{0.12} = PV\\[/tex]
PV $237,671.2914
we now discount for the deferred year:
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $237,671.00
time 1.00
rate 0.12000
[tex]\frac{237671}{(1 + 0.12)^{1} } = PV[/tex]
PV 212,206.2500
Chance
[tex]42000 \times \frac{1-(1+0.12)^{-13} }{0.12} = PV\\[/tex]
PV $269,789.0335
now, we deffer for the two year period
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $269,783.00
time 2.00
rate 0.12000
[tex]\frac{269783}{(1 + 0.12)^{2} } = PV[/tex]
PV 215,069.3559
We add then:
215,069 + 269,789 + 212,206.2500 = 697,064
The firm will make the first payment on Dec 31,2024 thus this will be an annuity due.
[tex]PV \div \frac{1-(1+r)^{-time} }{rate}(1 + r) = C\\[/tex]
PV 697,064.00
time 3
rate 0.12
[tex]697064 \div \frac{1-(1+0.12)^{-3} }{0.12}(1 + 0.12) = C\\[/tex]
C $ 259,126.684