Answer:
[tex]P(X>60) = 0.0821[/tex]
[tex]P(X<70 |X>60) = 0.3408[/tex]
Step-by-step explanation:
Given that:
X ~ Exp (β=24)
What is the probability that you wait longer than one hour for a taxi?
Pdf: f(x) = [tex]\frac{1}{\beta }e^{(-x/ \beta) }[/tex] , 0 < x
Cdf: P(X ≤ x) = [tex]1-e^{(-x/ \beta)}[/tex]
P(X ≤ x) =[tex]1-e^{(-x/ 24)}[/tex] for x > 0 ⇒ P ( X > x) = [tex]e^{-x/24}[/tex]
[tex]P(X>60) = exp (-60/ \beta)\\P(X>60) = e^{-25}\\P(X>60) = 0.082085[/tex]
[tex]P(X>60) = 0.0821[/tex]
Thus, the probability that you wait longer than one hour for a taxi = 0.0821
b)
[tex]P(X<70 |X>60)= P(X<70-60)\\P(X<10) =1-exp(-10/ \beta)\\P(X<10) = 1-e^{-0.416667[/tex]
[tex]P(X<10)[/tex] ≅ 0.340759
[tex]P(X<10)[/tex] = 0.3408
[tex]P(X<70 |X>60) = 0.3408[/tex]
The probability that one arrives within the next 10 minutes = 0.3408