Respuesta :
Answer:
[tex]\dot Q = - 194.295\,kW[/tex]
Explanation:
The model for the separator is obtained after applying the First Law of Thermodynamics:
[tex]\dot Q + \dot m_{1}\cdot h_{1} - \dot m_{2} \cdot h_{2} - \dot m_{3} \cdot h_{3} = 0[/tex]
The rate of the heat transfer is:
[tex]\dot Q = \dot m_{3}\cdot h_{3} + \dot m_{2}\cdot h_{2} - \dot m_{1}\cdot h_{1}[/tex]
The specific enthalpies of each state are, respectivelly:
[tex]h_{1} = 844.55\,\frac{kJ}{kg} + 0.7\cdot (1946.4\,\frac{kJ}{kg} )[/tex]
[tex]h_{1} = 2207.03\,\frac{kJ}{kg}[/tex]
[tex]h_{2} = 2791.0\,\frac{kJ}{kg}[/tex]
[tex]h_{3} = 844.55\,\frac{kJ}{kg}[/tex]
[tex]\dot Q = (3.1\,\frac{kg}{s})\cdot (844.55\,\frac{kJ}{kg} )+ (6.9\,\frac{kJ}{kg} )\cdot (2791.0\,\frac{kJ}{kg} ) - (10\,\frac{kg}{s} )\cdot (2207.03\,\frac{kJ}{kg} )[/tex]
[tex]\dot Q = - 194.295\,kW[/tex]
Answer:
-222.649 kW
Explanation:
The first step to solve this problem is to use the first law of thermodynamics:
[tex]\frac{dE}{dt}=Q-W+\sum{m_{i}*h_{i}}-\sum{m_{e}*h_{e}}[/tex]
Note that Q, W, and m represent rate of heat transfer, rate of work, and mass flow rate.
This reduces to:
[tex]0=Q-0+m_{1}h_{1}-m_{2}h_{2}-m_{3}h_{3}[/tex]
This equation can be rearranged to solve for rate of heat transfer (Q):
[tex]Q=m_{3}h_{3}+m_{2}h_{2}-m_{1}h_{1}[/tex]
The enthalpy values for this problem can be found from tables. From Fundamentals of Engineering Thermodynamics 9th Edition, the table used was Table A-3: Properties of Saturated Water (Liquid-Vapor): Pressure Table.
The value for [tex]h_{1}[/tex] is found by using the equation [tex]h_{1}=h_{f}+x(h_{g}-h_{f})[/tex]
[tex]h_{1}=467.11+0.7(2693.6-467.11)=2025.653[/tex] kJ/kg
The value for [tex]h_{2[/tex] is the value for [tex]h_{g}[/tex] at 1.5 bar due to it being saturated vapor.
[tex]h_{2}[/tex] = 2693.6 kJ/kg
The value for [tex]h_{3}[/tex] is the value for [tex]h_{f}[/tex] at 1.5 bar due to it being saturated liquid.
[tex]h_{3}[/tex] = 467.11 kJ/kg
Now these values can be substituted back into the equation solving for Q:
[tex]Q=m_{3}(467.11)+m_{2}(2693.6)-m_{1}(2025.653)[/tex]
Note that [tex]m_{3}=m_{1}-m_{2}=10-6.9=3.1[/tex] kg/s
The equation solving for Q becomes:
[tex]Q=(3.1)(467.11)+(6.9)(2693.6)-(10)(2025.653)[/tex]
[tex]Q=1448.041+18585.84-20256.53=-222.649[/tex] kW