If it requires 4.5 J of work to stretch a particular spring by 2.3 cm from its equilibrium length, how much more work will be required to stretch it an additional 3.5 cm

Respuesta :

Answer:

[tex]\Delta W=24.1162\ J[/tex]

Explanation:

Given:

  • work done to stretch the spring, [tex]W=4.5\ J[/tex]
  • length through which the spring is stretched beyond equilibrium, [tex]\Delta x=2.3\ cm=0.023\ m[/tex]
  • additional stretch in the spring length, [tex]\delta x=3.5\ cm=0.035\ m[/tex]

We know the work done in stretching the spring is given as:

[tex]W=\frac{1}{2} \times k.\Delta x^2[/tex]

where:

k = stiffness constant

[tex]4.5=0.5\times k\times 0.023^2[/tex]

[tex]k=17013.2325\ N.m^{-1}[/tex]

Now the work done in stretching the spring from equilibrium to ([tex]\Delta x+\delta x[/tex]):

[tex]W'=0.5\times k.(\Delta x+\delta x)^2[/tex]

[tex]W'=0.5\times 17013.2325\times 0.058^2[/tex]

[tex]W'=28.6162\ J[/tex]

So, the amount of extra work done:

[tex]\Delta W=W'-W[/tex]

[tex]\Delta W=28.6162-4.5[/tex]

[tex]\Delta W=24.1162\ J[/tex]

ACCESS MORE