Answer:
[tex]\Delta W=24.1162\ J[/tex]
Explanation:
Given:
We know the work done in stretching the spring is given as:
[tex]W=\frac{1}{2} \times k.\Delta x^2[/tex]
where:
k = stiffness constant
[tex]4.5=0.5\times k\times 0.023^2[/tex]
[tex]k=17013.2325\ N.m^{-1}[/tex]
Now the work done in stretching the spring from equilibrium to ([tex]\Delta x+\delta x[/tex]):
[tex]W'=0.5\times k.(\Delta x+\delta x)^2[/tex]
[tex]W'=0.5\times 17013.2325\times 0.058^2[/tex]
[tex]W'=28.6162\ J[/tex]
So, the amount of extra work done:
[tex]\Delta W=W'-W[/tex]
[tex]\Delta W=28.6162-4.5[/tex]
[tex]\Delta W=24.1162\ J[/tex]