Answer: 0.209 M
Explanation:
Moles of [tex]CO_2[/tex] = 2.00 mole
Moles of [tex]H_2[/tex] = 1.50 mole
Volume of container = 5.00 L
Initial concentration of [tex]CO_2[/tex] = [tex]\frac{moles}{Volume}=\frac{2.00mol}{5.00L}=0.400M[/tex]
Initial concentration of [tex]H_2[/tex] = [tex]\frac{moles}{Volume}=\frac{1.50mol}{5.00L}=0.300M[/tex]
The given balanced equilibrium reaction is,
[tex]CO_2(g)+H_2(g)\rightleftharpoons CO(g)+H_2O(g))[/tex]
Initial conc. 0.400 M 0.300M 0 M 0 M
At eqm. conc. (0.400-x) M (0.300-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[CO]\times [H_2O]}{[H_2]\times [CO_2]}[/tex]
Now put all the given values in this expression, we get :
[tex]2.50=\frac{[x]\times [x]}{[0.300-x]\times [0.400-x]}[/tex]
By solving the term 'x', we get :
x = 0.209 M
Concentration of [tex]CO[/tex] at equilibrium = x M = 0.209 M