Answer: 0.00297
Explanation:
Moles of [tex]SO_3[/tex] = 0.780 mole
Volume of solution = 4.00 L
Initial concentration of [tex]SO_2[/tex] = [tex]\frac{moles}{Volume}=\frac{0.780}{4.00L}=0.195M[/tex]
Equilibrium concentration of [tex]O_2[/tex] = [tex]\frac{moles}{Volume}=\frac{0.100}{4.00L}=0.025M[/tex]
The given balanced equilibrium reaction is,
[tex]2SO_3(g)\rightleftharpoons 2SO_2g)+O_2(g)[/tex]
Initial conc. 0.195 M 0 M 0 M
At eqm. conc. (0.195-2x) M (2x) M (x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[SO_2]^2\times [O_2]}{[SO_3]^2}[/tex]
Now put all the given values in this expression, we get :
[tex]K_c=\frac{(2x)^2\times (x)}{(0.195-2x)^2}[/tex]
Given [tex][O_2[/tex] = x = 0.025 M
[tex]K_c=\frac{(2\times 0.025)^2\times (0.025)}{(0.195-2\times 0.025)^2}[/tex]
[tex]K_c=0.00297[/tex]
Thus [tex]K_c[/tex] is 0.00297