Respuesta :
Answer:
The value of rate at which the sales are changing is 12
Step-by-step explanation:
Given function is, [tex]8p^{3}+x^{2}=45225[/tex]
To determine the rate at which sales are changing, that is, [tex]\dfrac{dx}{dt}[/tex], differentiate given function with respect to t,
[tex]\dfrac{d}{dt}\left ( 8p^{3}+x^{2} \right )=\dfrac{d}{dt}\left ( 45225 \right )[/tex]
Applying sum rule of derivative,
[tex]\dfrac{d}{dt}\left ( 8p^{3} \right )+\dfrac{d}{dt}\left ( x^{2} \right )=\dfrac{d}{dt}\left ( 45225 \right )[/tex]
Applying power rule and constant rule of derivative,
[tex] 8\left ( 3p^{3-1} \right )\dfrac{dp}{dt}+\left ( 2x^{2-1} \right )\dfrac{dx}{dt}=0[/tex]
[tex] 8\left ( 3p^{2} \right )\dfrac{dp}{dt}+\left ( 2x^{1} \right )\dfrac{dx}{dt}=0[/tex]
[tex] 8\left ( 3p^{2} \right )\dfrac{dp}{dt}+\left ( 2x \right )\dfrac{dx}{dt}=0[/tex]
[tex]24\left ( p^{2} \right )\dfrac{dp}{dt}+2\left ( x \right )\dfrac{dx}{dt}=0[/tex]
Substituting the values, [tex]x=135,p=15,\dfrac{dp}{dt}= -\:0.60[/tex]
Since it is given that price is falling, so [tex]\dfrac{dp}{dt}[/tex] is negative.
[tex]24\left ( 15^{2} \right )\left ( -\:0.60 \right )+2\left ( 135 \right )\dfrac{dx}{dt}=0[/tex]
[tex]24\times225\times\left ( -\:0.60 \right )+270\:\dfrac{dx}{dt}=0[/tex]
[tex]-3240+270\:\dfrac{dx}{dt}=0[/tex]
Adding -3240 from both sides,
[tex]270\:\dfrac{dx}{dt}=3240[/tex]
Dividing by 270,
[tex]\dfrac{dx}{dt}=\dfrac{3240}{270}[/tex]
[tex]\dfrac{dx}{dt}=12[/tex]