Suppose that the price p​ (in dollars) and the weekly sales x​ (in thousands of​ units) of a certain commodity satisfy the demand equation 8p cubedplusx squaredequals45 comma 225. Determine the rate at which sales are changing at a time when xequals135​, pequals15​, and the price is falling at the rate of ​$.60 per week.

Respuesta :

Answer:

The value of rate at which the sales are changing is 12

Step-by-step explanation:

Given function is, [tex]8p^{3}+x^{2}=45225[/tex]

To determine the rate at which sales are changing, that is, [tex]\dfrac{dx}{dt}[/tex], differentiate given function with respect to t,  

[tex]\dfrac{d}{dt}\left ( 8p^{3}+x^{2} \right )=\dfrac{d}{dt}\left ( 45225 \right )[/tex]

Applying sum rule of derivative,

[tex]\dfrac{d}{dt}\left ( 8p^{3} \right )+\dfrac{d}{dt}\left ( x^{2} \right )=\dfrac{d}{dt}\left ( 45225 \right )[/tex]

Applying power rule and constant rule of derivative,

[tex] 8\left ( 3p^{3-1} \right )\dfrac{dp}{dt}+\left ( 2x^{2-1} \right )\dfrac{dx}{dt}=0[/tex]

[tex] 8\left ( 3p^{2} \right )\dfrac{dp}{dt}+\left ( 2x^{1} \right )\dfrac{dx}{dt}=0[/tex]

[tex] 8\left ( 3p^{2} \right )\dfrac{dp}{dt}+\left ( 2x \right )\dfrac{dx}{dt}=0[/tex]

[tex]24\left ( p^{2} \right )\dfrac{dp}{dt}+2\left ( x \right )\dfrac{dx}{dt}=0[/tex]

Substituting the values,  [tex]x=135,p=15,\dfrac{dp}{dt}= -\:0.60[/tex]

Since it is given that price is falling, so [tex]\dfrac{dp}{dt}[/tex] is negative.

[tex]24\left ( 15^{2} \right )\left ( -\:0.60 \right )+2\left ( 135 \right )\dfrac{dx}{dt}=0[/tex]

[tex]24\times225\times\left ( -\:0.60 \right )+270\:\dfrac{dx}{dt}=0[/tex]

[tex]-3240+270\:\dfrac{dx}{dt}=0[/tex]

Adding -3240 from both sides,

[tex]270\:\dfrac{dx}{dt}=3240[/tex]

Dividing by 270,

[tex]\dfrac{dx}{dt}=\dfrac{3240}{270}[/tex]

[tex]\dfrac{dx}{dt}=12[/tex]

ACCESS MORE