Which are the solutions of x ^ 2 = - 5x + 8 ? (- 5 - sqrt(57))/2, (- 5 + sqrt(57))/2 (- 5 - sqrt(7))/2, (- 5 + sqrt(7))/2 (5 - sqrt(57))/2, (5 + sqrt(57))/2 (5 - sqrt(7))/2, (5 + sqrt(7))/2

Respuesta :

Answer: B

Step-by-step explanation:

The solution of the equation is [tex](\frac{-5 - \sqrt{33}}{2}, \frac{-5 + \sqrt{33}}{2})[/tex]

How to determine the solutions?

The equation is given as:

x ^ 2 = - 5x + 8

Rewrite as:

x^2 + 5x - 8 = 0

The above equation is a quadratic equation with the following parameters:

a = 1, b= 5 and c = -8

The solution is calculated as:

[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

So, we have:

[tex]x = \frac{-5 \pm \sqrt{(1)^2 - 4 * 1 * -8}}{2 * 1}[/tex]

Evaluate

[tex]x = \frac{-5 \pm \sqrt{33}}{2}[/tex]

Split

[tex]x = (\frac{-5 - \sqrt{33}}{2}, \frac{-5 + \sqrt{33}}{2})[/tex]

Hence, the solution of the equation is [tex](\frac{-5 - \sqrt{33}}{2}, \frac{-5 + \sqrt{33}}{2})[/tex]

Read more about equation solutions at:

https://brainly.com/question/14323743

ACCESS MORE