Respuesta :
Answer:
27.04 m/s
Explanation:
We are given that
Total mass,M=75 kg
Thrust force=F=200 N
Coefficient of friction, [tex]\mu=0.1[/tex]
Time,t=16 s
We have to find the Jason's top speed.
Net force,F=Ma=Thrust-Friction
[tex]75a=200-\mu mg=200-0.1\times 9.8\times 75=126.5[/tex]
Where [tex]\mu=0.1,g=9.8 m/s^2[/tex]
[tex]a=\frac{126.5}{75}[/tex]
[tex]a=1.69 m/s^2[/tex]
We know that
[tex]a=\frac{v-u}{t}[/tex]
[tex]u=0[/tex]
Substitute the values
[tex]1.69=\frac{v-0}{16}[/tex]
[tex]v=1.69\times 16=27.04 m/s[/tex]
Hence, Jason's top speed=27.04 m/s
Answer:
Explanation:
initial velocity, u = 0 m/s
mass, m = 75 kg
Thrust, F = 200 N
coefficient of kinetic friction, μk = 0.1
time, t = 16 s
Let a be the acceleration.
by Newton's second law
ma = F - friction force
ma = 200 - 0.1 x 75 x 9.8
75 a = 200 - 73.5
75 a = 126.5
a = 1.69 m/s²
By first equation of motion
v = u + at
v = 0 + 1.69 x 16
v = 27.14 m/s